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Abstract: Application of statistical methods in quality improvement of molded parts is presented in this paper. 
Implementation of two stages of DMAIC improvement cycle in a pre-production process is analysed in detail. DOE 
method is performed to define nominal values of process parameters of injection molding process. A fraction-
factorial design with a single central point is used. A linear mathematical model with included elements of second-
order interaction is defined.  Finally, control stage is performed using prior defined nominal values. Process 
capability test is conducted in order to determine whether the process is capable of producing parts within specified 
tolerance field. 
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Utvrđivanje nominalnih vrednosti ulaznih parametara za proizvodni proces korišćenjem DOE. Predstavljena 
je primena statističkih metoda u poboljšanju kvaliteta livenih delova u ovom radu. Detaljno je analizirana primena 
dve faze ciklusa poboljšanja DMAIC u pretproizvodnom procesu. DOE metoda se izvodi za definisanje nominalnih 
vrednosti procesnih parametara procesa injekcionog brizganja. Korišćen je skraćeni faktorski dizajn sa jednom 
centralnom tačkom. Definisan je linearni matematički model sa uključenim elementima interakcije drugog reda. 
Konačno, kontrolna faza se izvodi pomoću prethodno definisanih nominalnih vrednosti. Sprovedena je dodatna 
analiza kako bi se utvrdilo da li je proces sposoban za proizvodnju delova u okviru definisanog polja tolerancije. 
Ključne reči: dizajn eksperimenata(DOE), sposobnost procesa, injekciono brizganje. 
 
1. INTRODUCTION  
 
 Greatest efficiency in improving quality and 
productivity can be achieved by integrating them in the 
production process. Implementation of design of 
experiments (DOE) methodology at the earliest stages 
of the development cycle, while designing new product 
or process, improving the design of an existing product, 
or optimizing production process, is key to success. In 
order to improve complex multivariable processes, a 
structured approach could be practical and beneficial. 
An example of a tool which ensures process 
improvement and prevents future defects is data-driven 
quality strategy DMAIC. 
 Various controlled and uncontrolled factors affect 
the quality of a molded part. Purpose of DOE is 
performing minimal number of experimental iterations, 
while including all influential input factors needed to 
develop reliable model-based process. A method to 
determine this value was proposed by MKS [1]. The 
study presents that fractional factorial model shows 
approximately same results as full factorial model. 
However, ten input factors are analysed. This would 
lead to decreasing experiment efficiency. Also 
repetition of experiments is not included and therefore 
experimental error could not be estimated. Crucial part 
of the planning phase is choice of input factors in DOE. 
A.O. Andrisano et al [2] propose an algorithm for 
determining the optimal set of process parameters for 
given product requirements. S. Rajalingam et al [3] use 
three input factors with repetition. Abohashima HS et al 
[4] use four input factors with repetition to determine 

the influence of chosen parameters on attributive 
characteristics. Effects are calculated and plotted in 
Minitab software. S.K. Sharma et al. [5] perform DOE 
in Autodesk Invertor. Reliability of the experiment 
depends on CAE and software limitations. Andrisano 
also includes integration of DOE and CAE method - 
design of simulation experiments (DOSE) method. 
U.M. Attia et al [6] use different approach in 
determining the effect of input factors on variable 
characteristics. Controlled output is weight of molded 
parts rather than their dimensions. DOE is extremely 
practical in determining optimal input parameters in a 
production process, which result in higher productivity 
and quality. U. D. Gulhane et al. [7] investigate the 
effect of machining parameters on surface finish of a 
machined part and define their optimal values. D. Bajić 
et al. [8] optimises a milling process using DOE. T. 
Tamizharasan et al. [9] use DOE as an approach in 
defining the geometry of cutting tool. Pantelis N. 
Botsaris et al. [10] use sensor-based approach in order 
to monitor wearing of cutting tool in real time and 
detect its breakage in drilling processes. Using DOE 
models, machining parameters are varied. Optimal 
values of parameters and work conditions, which lead to 
longer tool life, are defined. However, DOE method is 
not limited on production of mechanical parts and has a 
broader significance. For example, Verma et al. [11] 
present the effects of key process variables for a 
microfluidization unit using fractional model. C. 
Yuangyai et al. [12] emphasise the impact DOE has on 
the advancement of nanotechnology and 
nanomanufacturing.  
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Review of relevant literature shows that while the 
improvement stage is analyzed in detail, the control 
stage is not included. Therefore, capability of the 
improved process could not be determined. Proposed 
paper complements process improvement and control by 
integrating both stages. A case study is analyzed. The 
purpose is to examine the correlation between the input 
process parameters of an injection process and critical 
for assembly (CTA) dimension of a molded part. While 
variable characteristics are the controlled output, 
attributive characteristics must not be impaired. Analyze 
of mold construction is not included, but only process 
parameters are varied. Two stages of DMAIC are used 
in determining nominal values of process parameters 
and controlling output of previously defined injection 
molding process parameters. The experiment is 
performed during a trial production. The prime purpose 
is molding parts with variable characteristics closest to 
nominal, in the specified tolerance field, while 
achieving satisfying attributive characteristics.   
Furthermore, a trial production using the adjusted 
nominal values is performed, in order to provide 
sufficient data for process capability analysis. Statistical 
analysis of the results is applied to provide a better 
interpretation of the experiment. Based on the empirical 
results, an adequate and valid linear mathematical 
model has been generated, using Microsoft Excel.  
 
2. METHODOLOGY 
 
 The experimental part of this study case was 
performed in two phases, shown in figure 1. In the first 
phase, influence of six factors at two levels was 
examined using a full factorial model of DOE. Selection 
of input parameters was done based on research [13] 
and empirical experience, considering chemical 
composition of the granule, part’s geometry and weight 
and nature of the controlled CTA dimension. 
Consequently, the most influential factors are used as an 
input in the second phase of DOE. Experiment based on 
fractional factorial model with one central point [14] is 
performed, in order to examine the influence of four 
most influential factors and their interactions.  
 Based on acquired data, a mathematical regression 
model is defined. Mathematical regression models could 
easily be solved and used in production for process 
understanding, design and control. This approach could 
lead to efficient development and implementation of a 
robust process that ensures consistent production with 
desired quality level. The model is defined using 
Microsoft Excel. Consequently, an Excel template is 
created for conducting a simple and fast analysis of the 
generated data from DOE. This template is especially 
useful for non-experienced researchers. All the user 
would have to do is input the collected data and a 
mathematical model would be generated. While 
performing DOE calculations, all the steps of the 
mathematics of this method are shown and could easily 
be studied. The user could understand the meaning of 
the coefficient values and conducted model analyses. A 
standard statistical software performs black-box 
calculations and only generates required output data. 
Also, if a potential engineering change in part or process 

is made, models would have to be updated. Created 
Excel template could be used to monitor model 
performance over the life cycle of the production 
process. An approach for monitoring model 
performance is proposed in this study. It includes 
periodic comparison of model prediction to a reference 
method. Consequently, two hypotheses are set: 
H1: Obtained results from performed experiment match 
predicted results from generated mathematical model 
which leads to defining identical nominal values of 
machine process parameters. 
H2: Obtained results from performed experiment do not 
match predicted results from the mathematical model, 
i.e. analytical calculations do not match the real 
process. 
 

 
 Fig. 1. Algorithm of activities 

 
3. CASE STUDY 

 
3.1 Design of experiments (DOE) 
 Prior to experiment realization, all stages of its 
preparation have to be completed. First of all, machine, 
operator, material and work conditions have to be 
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defined.  The experiment is performed on a single 
machine during one working week, by the same 
operators. This minimizes the possibility of variations 
caused by machine or operator. The used granule is 
defined in the specification of the part - ABS + PC, 
which has to be dried for 3 hours at 120°C.  
Controlled dimension (CTA) is defined in the technical 
drawing of the part, and its value is 209±0.46 mm, 
shown in figure 2. 

 
Fig. 2. Controlled dimension of the moulded part 
 
Also, the basic principles of DOE have to be fulfilled 
[13]:  
-      Randomization refers to random controlled samples 
and order of individual tests. This is necessary because 
statistical methods require independently distributed 
errors and random variables. Proper randomization of 
the experiment allows external factors (which may be 
present) to be brought to an average value. In some 
situations, randomization is difficult to be performed, 
for example: mold temperature is one of the factors 
examined and has levels of 50 and 90 °C. 
Randomization is impractical if the first test is 
performed at mold temperature of 50 °C, then the next 
one at 90 ° C, and then again at 50 °C. In other words, 
mold should be heated to 90 ° C, then cooled to 50 °C, 
then reheated to 90 °C, etc. which results in longer 
downtimes and reduced efficiency.  

-   Replication of experiment is independently 
conducted test for each combination of factors. It 
provides enough information for calculation of 
experimental error, which presents the basic unit of 
measurement for determining whether the observed 
differences in data are statistically different. 
Additionally, it provides greater accuracy in estimating 
the mean response value for a single level of factors in 
the experiment. In order to effectively perform this 
principle, it is necessary to include only most influential 
factors or use a fractional-factorial model.  

- Blocking of samples or dividing samples into blocks 
under homogenous working conditions is a technique 
used to eliminate or reduce impact of uncontrollable 
input factors and improve calculated effect accuracy. 
This is useful, because often it is impossible to perform 
all repetitions within DOE under constant or 
homogeneous conditions.  

 Based on research and experience, six most 
influential machine process parameters and their process 
windows are chosen. Factors such as die opening speed 

and ejection speed do not directly affect the process and 
therefore are omitted. Object of analysis is the influence 
of the following parameters [15]: 
-  Mold temperature (A) is responsible for maintaining 
the flow of molten plastic and complete filling of the 
cavity. The temperature of the molten plastic at the end 
of the filling phase should be within the recommended 
range for the specified granule. This applies to 
amorphous and crystalline materials. Low level should 
be the minimum value at which flow of molten 
granulate is enabled. High level is selected as the 
maximum at which there is no granule degradation. 
Selected levels of this factor are 50 and 90 ° C. 

-  Injection speed (B): Low level is selected as the 
minimum velocity at which the cavities are fully filled 
and high level is the maximum velocity at which no 
flash is formed. Selected levels are 25 and 100 cm3/s. 

-  Holding pressure (C) is one of the most important 
factors and must always be considered as a factor for 
DOE. Low level is selected as the minimum velocity at 
which the cavities are fully filled and high level is the 
maximum velocity at which no flash is formed. Selected 
levels of this factor are 400 and 800 bar. 

-  Cooling time (D): Low level is selected as the 
minimum value at which solidification at the gates is 
achieved. High level is taken as the lower value 
multiplied by three. Levels are 5.5 and 15 s. 

-  Screw rotation (E): Low level should be the 
minimum value which allows proper melting of the 
granule and results in forming a homogenous molten 
plastic. High level is selected as the maximum at which 
there is no granule degradation. Selected levels of this 
factor are 90 and 120 upm. 

-  Temperature of molten plastic (F): In the case of 
amorphous materials, the recommended melting 
temperature range is wide and thus it may affect the 
shrinkage and dimensions of the part. ABS + PC is 
amorphous material, and therefore this factor is 
analyzed. Levels are selected based on material 
specification: 250 and 280 ° C. 

 

Table 1. High and low levels of input parameters 

Parameter   Unit Levels 

A: Mold temperature °C 50 90 

B: Injection speed cm3/s 25 100 

C: Pressure bar 400 800 

D: Cooling time s 5.5 15 

E: Temperature of 

molten plastic 
°C 250 280 

F: Screw speed upm 90 120 
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Fig. 3. Tornado diagram 

 
 There are up to four process parameters that will 
cause a significant variation in part dimensions [14].  In 
order to perform a practical and efficient DOE with 
replications, it is necessary to select the most influential 
factors. 
 Main effect value of the input factors can be 
calculated using the following relation: 
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Table 2. Experimental matrix for fractional factorial 
model 24-1 with one central point 

 
 A full factorial 26 model of DOE was performed and 
gained data is analyzed using a statistical tool – Tornado 
diagram, figure 3. A total of 26 = 64 (2k, 2- number of 
levels for each factor, k-number of factors varied) 
combinations of the experiment were performed, 
without repetition. The diagram shows that factors with 
lowest influence are temperature of molten plastic(E) 
and screw speed(F).  
 The second phase was performed by varying A-D 
factors, using a fractional factorial model  24-1 with one 
central point.  In order to estimate the experimental 
error, for each combination of values the experiment 
was repeated 10 times. A total of (24-1+1) ·10=90 parts 
have been molded. 
 Next, transforming the gained data into useful 
information is in order. According to previous research 
in the field of injection molding [14], recommended 
model for describing this process is linear mathematical 
model which involves first-order interaction members. 
Specific form of regression model for 24 DOE is: 
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 Mathematical model is a quantitative correlation 
(equation) between response and significant input 
factors. A lower order polynomial model is usually 
considered appropriate [14]. Based on the presented 
Pareto diagram of effects in figure 4, the preliminary 
model is chosen: 
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Fig. 4. Pareto chart 
 
Calculated coefficient values: 
 

765.2010   

009.01   

0565.02   

1255.03   

006.04   

036.012   

021.014   

 
Consequently, the regression model is: 
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(4) 
After conducting Student’s analysis, coefficients β1 and 
β4 proved to be negligibly small and insignificant 
compared to the others, and therefore can be omitted: 

41
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(5) 

The experiment satisfies all necessary assumptions for 
carrying out an ANOVA analysis:  
- all measured values have to be normally distributed 
(concluded from plotted histogram in figure 5),  
- equal variances (or standard deviation values) among 
groups (concluded from Cochran’s test for group 
variance),  
-random sampling. 
 

 1 2 3 4 5 6 7 8 9 

A + + + + - - - - 0 

B + + - - + + - - 0 

C + - + - + - + - 0 

D + - - + - + + - 0 
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Fig. 5. Histogram 
 
 ANOVA analysis decomposes total variance into 
variability occurred under the influence of controlled 
factors and uncontrolled (residual) factors. After 
conducting ANOVA analysis, it can be concluded that 
mean values from at least two individual groups differ 
significantly. In other terms, change of CTA value is 
caused by variation of the controlled input factors and 
the proposed model is significant. 
 Additional analysis of adequacy of the regression 
model is an integral part of DOE. Whether the model is 
an accurate representation of the collected data can be 
deduced by conducting the Fisher lack-of-fit test. This 
test proves that there are no factors that significantly 
affect the controlled response, which have not been 
included in the model. 
 That one may perform a simple and fast analysis of 
the generated data from DOE, an Excel template has 
been developed. All the user would have to do is input 
the collected data and a mathematical model would be 
generated. Furthermore, previously performed analyzes 
that prove significance of the data and adequacy of the 
mathematical model to characterize the system are 
included in it.  
 By inputting values of process parameters (that 
belong in the studied process window) in the 
mathematical model, which is significant and adequate, 
the value of the CTA dimension can be calculated. 
According to the results (shown in table 3), it can be 
concluded that nominal values of the process parameters 
are the high levels of all four input factors: 

 

Table 3. Nominal values of process parameters 
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mmy 9315.201  

 Results obtained from the performed experiment and 
the calculated values from the mathematical model are 
corresponding. In other words, identical nominal values 
of the process parameters of the machine are defined 
analytically and experimentally.  
 

3.2 Process capability test 
 Prior to releasing a process in serial production with 
defined nominal values from DOE, control stage is in 
order. Trial production was performed in duration of 
five work days in three shifts. Five parts (their CTA 
dimension) were controlled on every four work hours.   
This test shows whether the process is capable to 
produce parts in the specified tolerance field [12]. 
Capability test is conducted by calculating the process 
capability and index of process capability parameters: 
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USL – upper specification limit 
LSL – lower specification limit 
ϭ- standard deviation 
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Standard deviation:  
 

V                                                                    (10) 
   
 Values of capability parameters, table 4, show that 
the process is capable to produce parts within the 
specified tolerance field. 
 

Standard deviation 0.045 

USL 202.36 

LSL 201.44 

Cp 3.4 

Cpk 3.7 

Table 4. Values of process capability test parameters 
 
4. CONCLUSION 
 
 DOE methodology was used in order to determine 
nominal values of process parameters of an injection 
molding process. After stages of planning, design and 
performance of DOE, from which relevant data were 
collected and analyzed by statistical methods, a 
conclusion has been reached. Defined nominal values of 
input process machine parameters from DOE coincide 
with the conclusion drawn from the mathematical model 
obtained in the case study. Hypothesis H1 is accepted. 
Fractional factorial model with one central point has 
been used, in order to meet the basic principles of 

Process parameters Nominal values 

Mold temperature 90 °C 

Injection speed 100 cm3/s 

Holding pressure 800 bar 

Cooling time 15 s 
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experimental design, with a minimum number of 
iterations. A linear model with second-order interaction 
members has been used as the most appropriate model 
for defining an injection process. Only most influential 
interaction factors were included. 
Furthermore, a trial production process was performed 
and process capability test was perfomed. Results show 
that the process with prior defined nominal values of 
process parameters, is capable to produce parts within 
the specified tolerance field. 
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