
Journal of Graphic Engineering and Design, Volume 7 (2), 2016. 25

Introduction

Two main reasons for this research are:

1. Popular software for generating L-system trees
like L-Studio and xLinden use small amount of
parameters that can be changed. The idea was to
write scrypt in one of the most popular software for
3D modeling with as many variables as possible for
tweaking our result.

2. Autodesk Maya makes it possible to modify models
even further and to export them in all possible
formats used in 3D.

3Modeling natural objects with a computer have been a
very difficult task for decades. Modeling 3D trees from
the real world is very difficult due to their variations
and complex geometry. Plant modeling requires a
combination of biological knowledge, mathematical
formalism and computer graphics programming.

There has been a great deal of research on modeling
trees, predominantly using procedural approaches
(Lindenmayer, 1990) and reconstruction approach,
mostly by photographs (Reche-Martinez, Martin &
Drettakis, 2004). Complexity and visual appearance

have been enhanced over the years in such a way that
today many tree models appear photo-realistic to us.

Many approaches have been proposed to
model plants and trees, and they can be roughly
classified as either rule-based or image-based.

Image-based methods. Image-based methods
directly model the plant using image samples.
Models generated by these approaches are
only approximate and have limited realism.

Rule-based methods. (Prusinkiewicz, James &
Měch, 1994) developed an idea of the generative
L-system. Rule-based techniques make use of a set
of generative rules or grammar to create branches
and leaves. Plant models in computer graphics
are commonly created using procedural methods,
which generated branching structures with a
limited user input. Our approach is rule-based.

Modeling in three dimensions

For modeling in three dimensions turtle algorithm
is used. Three vectors indicate the turtle’s
heading, the direction to the left, and the direction up.

Nemanja Stojanović

RT-RK, Novi Sad, Serbia

Corresponding author:
Nemanja Stojanović
nemanja.stojanovic007@gmail.com

First recieved: 18.09.2016.
Accepted: 21.11.2016.

abstract

This paper introduces a method for generating 3D tree models using
stochastic L-systems with stochastic parameters and Perlin noise.
L-system is the most popular method for plant modeling and Perlin
noise is extensively used for generating high detailed textures. Our
approach is probabilistic. L-systems with a random choice of parameters
can represent observed objects quite well and they are used for
modeling and generating realistic plants. Textures and normal maps
are generated with combinations of Perlin noises what make these
trees completely unique. Script for generating these trees, textures and
normal maps is written with Python/PyMEL/NumPy in Autodesk Maya.

KEy WoRDS
L-system, Perlin Noise, Procedural, Modeling

a method for generating stochastic
3d tree models with Python
in autodesk Maya

Professional paper http://doi.org/10.24867/JGED-2016-2-025

http://doi.org/10.24867/JGED-2016-2-025

These vectors have unit length, are perpendicular to each
other, and satisfy the equation (Prusinkiewicz,
1986; Prusinkiewicz & Lindenmayer, 1996). Rotation
of the turtle is expressed by the equation:

is rotation matrix with dimensions 3x3. It represents
rotation by angle α around the vectors: i

 » Figure 1: Controlling the turtle in three dimensions

The following symbols control turtle orientation in space:

Move forward a step of length α > 0.
Move forward a step of length α
without creating a branch.
Rotate around by an angle of α degrees.
Rotate around by an angle of -α degrees.
Rotate around by an angle of α degrees.
Rotate around by an angle of -α degrees.
Rotate around by an angle of α degrees.
Rotate around by an angle of -α degrees.
Stores information about turtle’s posi-
tion and orientation in an array (branch
vectors and rotation angle).
Restore information from last position in an array.

Modeling of trees

All trees generated by the same deterministic L-system
are identical. In order to prevent this artificial regularity it
is necessary to introduce variations that will preserve the
general aspects of a tree but will modify its details. If the
same L-system was used again, with different seed values
for the random number generator, a variation of this
image would be generated. The geometric parameters,
such as the length and diameter of an internode, as well
as branching angles, are calculated according to stochas-
tic laws. Width of branches in every iteration is equal to
width of the branches in previous iteration multiplied by
factor wr = 0.707. This constant satisfies a postulate by
Leonardo da Vinci, according to which “all the branches
of a tree at every stage of its height when put together
are equal in thickness to the trunk below them.”

Perlin Noise

Noise is the random number generator of computer
graphics. It is useful wherever there is a need for a
source of extensive detail. Since its introduction more
than two decades ago, Perlin noise has found wide use
in graphics. Perlin noise is generated with fractal sum-
mation of basic noise functions. Each noise is multiplied
by a weight controlling its contribution to the final
result (Ward 1991; Perlin, 2002). This idea was intro-
duced by Perlin. The final pattern can be presented as:

Where np(x,y) is Perlin noise and ni(x,y) is basic noise
i. Parameter α defines how irregular will the generated

F(α)
f (α)

+ (α)
- (α)
& (α)
˄(α)
/F(α)
\(α)
[

]

(2)

(3)

(4)

 » Figure 2: Perlin noise and its modifications. In bottom row we can see images of plane with applied textures from
first row

26

(1)

Journal of Graphic Engineering and Design, Volume 7 (2), 2016. 27

noise be. In practise parameters a and b are usually
equal and it is common that they are both equal to 2. In
this case, when a and b are equal, we can replace them
with 1/H, where H can be treated as Hurst parameter
in fractional Brownian surfaces (Mishura, 2008). Each
noise ni (x,y) is called octave and Perlin noise is commonly
formed by twofold decrease in amplitude and twofold
increase in frequency of these octave noises. Frequency
is input parameter in our noise functions and it is cal-

culated as 1 / (p · (1 / a)i) or 1 / (p · Hi) , which means it
will increase by 1/H for each octave. This value 1/H, with
which frequency is multiplied, is called lacunarity. On the
other hand, amplitude has a constant value in first noise
function and it is decreased by dividing whole noise func-
tion with bi or Hi. This value H with which we decrease
our amplitude is called persistance. Typically k has value
between 5 and 10 and in our case k is equal to 7.
Images in the first row of Figure 2 are created with

Python/PyOpenGL, and images in second row represent
render of XY plane with textures from above applied on
them, in Autodesk Maya. Images 1, 2, 3, and 5 are used
as heightmaps that generate a terrain, while images 4
and 6 represent applied normal map on a plane.

Images 3 and 5 in Figure 2 are created by modifying Per-
lin Noise with sin wave. This can be seen in next pseudo
code:

As can be seen, modifying Perlin noise images is quite
easy. Combining different images generated with Perlin
noise, doesn’t require much effort either. For generating
normal maps from textures Sobel operator is used.
Source code for noise function as well as more in depth
explanation about combinations and modifications of
Perlin noise was covered in our previous research
(Stojanović, 2016).

 » Figure 3: Algorithm for generating 3D tree models in Autodesk Maya

algorithm

To generate L-system tree model we first have to create
L-system string with defined axiom, distribution rules,
probabilities for each distribution (if we use stochastic
L-systems) and number of iterations. After the L-system
string is created we go through every string symbol, as
shows in step 2 of Figure 3, and generate our branches.
Idea of generating 3D tree model after L-system string is
done is to use two vectors that change with every branch
generated. First we start with vector one in (0,0,0), and
vector two with (0,y,0) (Height of the tree trunk is y).

After the first branch is created, in this case tree trunk,
first vector becomes second and next calculations with
transformation matrix are applied on vector two, so we
again create branch between vectors one and two.

Every branch should have smaller and smaller radius, so
we generate our model with truncated cones rather than
cylinders. In case of symbols [or] we save our vectors in
a list. For every next symbol [we append our list, and for

every symbol] last elements of a list are deleted and we
use new ending elements for further calculations.

After the L-system tree is generated, textures and normal
maps are applied. On tree trunk and starting branches
Boolean union function is applied, and then the trunk is
smoothed. This newly generated trunk won’t have any
leaves on it.

Boolean union function doesn’t work very well in Maya
2012, Maya 2015 and Maya 2017. It tends to hide
branches on which it was applied, so script for Boolean
union function was written by copying 3Ds Max ProBool-
ean idea. Results of our program before the creation of
leaves is shows on Figure 4.

Next, we have to generate leaves on tree.
Every leaf is generated with usage of random variable X,
defined like this:

 » Figure 4: Three examples of trees before and after boolean union function, textures and normal maps

28

Journal of Graphic Engineering and Design, Volume 7 (2), 2016. 29

Where k ϵ □+ presents width of the leaf. In our case k is
equal to ap /4, so width and height of the leaf are equal.
p ϵ (0,Sx) represents edges in cylinder and Sx number
of subdivisions of cylinder by x axis. ap = Vp+Sx - Vp is edge
vector for every edge p. bp defines starting position of
leaf on the edge, and Li,p , i={1,2,3,4}, defines positions
of leaf vertices. Nm , m ϵ {0, 1,...2p-1,2p} defines normal
vector in vertex m. Normal vectors on boundary vertices
have 2 normals as can be seen on Figure 5, and this fea-
ture was used to position leaves facing the new branches
with ease.

 » Figure 5: Vertex normals on cylinders in
Autodesk Maya

Four examples created with two given L-systems are
shown below. Tree models are made of about 4724
(image2) – 6120 (image1) polygons. Subdivision Sx
for each cylinder is 20, so amount of polygons can be
reduced drastically without any loss of details. Tree
generation takes 5 (image2) – 13 (image1) seconds
on i5/2.20Ghz/8GB RAM/64 bit windows 10, and
low quality maya render is used for images below.

r represent random integer, and it is generated every
time our programs runs over it.
As can be seen on previous examples, branch lengths
depend on number of iteration. Lengths of branches in
previous example are 10, 9, 8, 7, 6, 5 and 4, so further
changes were made. Length of branches should be sto-
chastic too. Also, idea was to make production’s double
for every production that will continue to grow our
previous branch with a slightly changed angle.
This idea provided more to realism to tree models.
On next example results of our program are shown. Trees
are completely stochastically generated.

Conclusion and future work

The purpose of this paper is to show how to easily
generate realistic trees in Autodesk Maya. Idea was to
procedurally generate 3D tree models with textures and
normal maps in Maya, so models can be easily modified
and exported for further use. Results demonstrate
clearly that 3D tree models can be generated quite fast
and easily. The possibility of defining other stochastic
L-systems, with different textures, that represent kinds
of plants in nature should and will be explored in the
future work. Further work will also cover optimization
for generating these models faster. Reduction of
subdivisions, what implies reduction of polygons is
already an option, but the goal is to stop using PyMEL
and its PyNodes completely. Even though they give
massive amount of possibilities, treating every branch
as PyNode reduce program’s speed drastically. Original
script for generating 3D tree models was made so that
realistic representations of growing plants can be easy
to modify with all parameters included in process:
textures (their colors, width, height, combinations),
trees (width, height and subdivisions of branches,
L-system and probabilities of distributions) and leaves
(where and how many will be on each branch).

References

Mishura, Y. (2008) Stochastic Calcu-
lus For Fractional Brownian Motion And
Related Processes. Berlin, Springer.

Perlin, K. (2002) Improving noise. ACM Transactions
on Graphics. 21 (3), 681-682. Available from: doi:
10.1145/566654.566636 [Accessed 10th June 2016].

Prusinkiewicz, P. (1986) Applications of L-systems to
computer imagery. In: Ehrig, H., Nagl, M., Rozenberg,
G. & Rosenfeld, A. (eds.) Graph Grammars: Proceed-
ings of the 3rd International Workshop on Graph
Grammars and Their Application to Computer Science,

6n =

: (10)w F A
3/12

1 1 1 1 1 2 2 3 2 2 3: [\() & () / () ^ () (10 0.5)][\() & () (10)] / () & () (10)p A r r r r F j A r r F j r A r r F j r A→ − + − − − −
1/12

2 2 2 3 2 2 3: [\() & () (10)] / () & () (10)p A r r F j r A r r F j r A→ − − − −
3/12

3 1 1 1 1 2 2 3 2 2 3: [\() & () / () ^ () (10 0.5)][/() ^ () (10)] \ () ^ () (10)p A r r r r F j A r r F j r A r r F j r A→ − + − − − −
1/12

4 2 2 3 2 2 3: [/() ^ () (10)] \ () ^ () (10)p A r r F j r A r r F j r A→ − − − −
3/12

5 1 1 1 1 2 2 3 2 2 3: [\() & () / () ^ () (10 0.5)][/() ^ () (10)] / () & () (10)p A r r r r F j A r r F j r A r r F j r A→ − + − − − −
1/12

6 3 2 2 3 2 2 3: [(10)][/() ^ () (10)] / () ^ () (10)p A F j r A r r F j r A r r F j r A→ − − − − − −

1 (1,8)r randInt= 2 (25,40)r randInt= 3 (0,1)r randFloat=

http://dl.acm.org/citation.cfm%3Fdoid%3D566654.566636

30

Graph Grammers 1986, 2 -6 December 1986, War-
renton, Virginia, USA. Berlin, Springer. pp. 534-548.

Prusinkiewicz, P., Hammel, M., Hanan, J. & Mech,
R. (1996) L-systems: From The Theory To Visual
Models Of Plants. In: Michalewicz, M.T. (ed.) CISRO
1996: Proceedings of the 2nd CSIRO Symposium on
Computational Challenges in Life Sciences, CISRO
1996, 5 - 7 Febrary 1996, Melburne, Australia.
Clayton South VIC, CSIRO Publishing. pp. 1-32.

Prusinkiewicz, P., James, M. & Měch, R. (1994) Syn-
thetic topiary. In: Glassner, A. (ed.) SIGGRAPH
94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques,
SIGGRAPH 1994, 24 - 29 July 1994, Orlando,
Florida. New York, ACM Press. pp. 351-358.

Prusinkiewicz, P. & Lindenmayer, A. (1996) Modeling
of cellular layers. In: Prusinkiewicz, P. (ed.) The
Algorithmic Beauty of Plants. The Virtual Lab-
oratory. Springer, New York, pp. 145-174.

Reche-Martinez, A., Martin, I. & Drettakis, G. (2004)
Volumetric reconstruction and interactive render-
ing of trees from photographs. ACM Transactions
on Graphics. 23 (3), 720-727. Available from: doi:
10.1145/1186562.1015785 [Accessed 10th May 2016].

Stojanović, N. (2016) Applications of two-di-
mensional Perlin Noise wit C++. Ser-
bian Science Today. 1 (1), 157-168.

Ward, G. (1991) A recursive implementation of the perlin
noise function. In: Glassner, A.S. (ed.) Graphics Gems
II. The Graphic Germs Series: A Collection of Practi-
cal Techniques for the Computer Graphic Program-
mer. Academic Press, San Diego, pp. 396-401.

© 2016 Authors. Published by the University of Novi Sad, Faculty of Technical Sciences, Department of Graphic Engi-
neering and Design. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution license 3.0 Serbia (http://creativecommons.org/licenses/by/3.0/rs/).

https://dl.acm.org/citation.cfm?doid=1186562.1015785

