
Journal of Graphic Engineering and Design, Volume 12 (1), 2021. 5

Introduction

A Print Service Provider (PSP) needs many experts in
order to accomplish all the different production pro-
cesses, which are necessary for manufacturing a print
product. Those experts usually have a deep knowledge
in their special fields. For example, to determine the
width of the spine for a hard cover book sounds easy
at the first glance, however, it often requires a lot of
expertise and experience. On the other hands, project
and production manager do not need to know all details
of each production process. They should be able to pre-
define the necessary production steps, their sequence,
their upfront requirements and their outcomes. This
reflects the old mantra of specialists and generalists.

Conducting student projects in graphical departments
at universities, we noticed that even students tend
to specialize very much. Some of them are inter-
ested in product design (only), others in Prepress,
Press or Postpress. That is, in practical group proj-

ects most students like to pick their favorite topic,
which they know best already. In the end, it is hard
for most of them, to outline a production overview.

Several years ago, we created different versions of
paper-based gaming cards for different processes: In
lab classes, the students laid the cards on a table in
an ordered manner displaying a specific production
workflow. The students paired up in small groups in
order to stimulate a discussion about the solution.

Increasing production automation definite-
ly is key in the Graphical Industry. There are
two very different ways to accomplish that:

a. automating individual processes or
b. automating the workflow

Automation of machines falls into category a).
That is, robots, cobots and production equipment
that, for example, shortens make-ready times.

Thomas Hoffman-Walbeck1
Richard Adams2

1 Stuttgart Media University,
Stuttgart, Germany
2 Ryerson University,
Toronto, Canada

Corresponding author:
Thomas Hoffman-Walbeck
e-mail: hoffmann@hdm-stuttgart.de

First received: 1.6.2020.
Revised: 4.9.2020.
Accepted: 7.9.2020.

ABSTRACT

We are presenting an online workflow puzzle, which runs in a browser.
The player can put together puzzle pieces to pre-defined production
chains. Extensive online help supports the player in laying out the
puzzle pieces correctly. The puzzle is based on the process-resource
model, which is also the basis of the Job Definition Format. This
paper explains the game as well as implementation strategy.

KEY WORDS
workflow, online game, JavaScript, HTML, jQuery, JDF

Online Workflow Puzzle

Original scientific paper http://doi.org/10.24867/JGED-2021-1-005

https://orcid.org/0000-0002-9719-8441
http://doi.org/10.24867/JGED-2021-1-005

66

Software algorithm in Prepress for automating
an individual task we also subsume under a).

Automation of class b) has two variants. One is of
purely organizational (e.g. by determining who is
supposed to transmit at what time imaged plates to
the offset press); the other one has more of an IT
aspect: Devices and software modules sharing infor-
mation to make sure that each process gets all the
required resources that they need for executing in
time. There are still many optimization potentials in
this. It is the area of the Job Definition Format (CIP4,
2020a), where product descriptions and production
details are send to several devices so that those can
use them for an (automatic) execution of a process.
Often, this is called an “integration” of processes.

JDF employs the process-resource model for the
product description. This is also true for XJDF (CIP4,
2020b), but to a somewhat lesser extent. A process
is an activity like printing or folding. Mostly, a process
requires input resources for execution and generates
one or more output resources. In general, a resource
is either some physical object (like plates or paper) or
some electronic/conceptional entities (like PDF pages,
parameter sets). Some resources are output resources
of some process and in the same time input resources
for some other. We are calling those “transactional”
resources. An images plate, for example, is the output
resource of the process “image setting” and in the
same time an input resource of the “printing” process.
A physical press would be an example for a non-trans-
actional input resource of the printing process. Note,
that the transactional resources imply the sequence of
processes. Thus, they are important for scheduling.

In summary, we would like to justify our motiva-
tion for a design a workflow puzzle that on the one
hand, we consider the integration of technical pro-
cesses in print production extremely important for
the graphical industry and on the other hand, we
see that students have a certain lack of knowledge
with this respect. Getting an overview of production
sequences is the first right step in this direction.

Our puzzle game is based on the process-resource mod-
el. The player can lay down puzzle pieces that represent
either processes or resources. Such a puzzle pieces is
also called a “card” in this paper and in the code of our
game. Since in a real production environment the model
can get complicated with dozens of processes and hun-
dreds of resources, we had to simplify the model. We
archived that by focusing on transactional resources.

We need to clarify that the names of the process-
es and the resources that we are using in the game,
are not necessarily the names that CIP4 specified in
the JDF specification. The latter are frequently some-

what abstract (like “RunList” or “Component”) and
a bit hard to comprehend for students. We also like
to mention, that the process-resource model is not
limited to a model for print production only, but suits
any workflow. This holds for our puzzle as well.

We believe that this re-design of the ana-
logue card game to an online puzzle game
has several advantages for the students:

• They have access to online-help about
processes and resources if they need
more information about them

• Since they do not need a physical card game,
they can play the puzzle outside the class

• They get an immediate respond if the
lay the card in a wrong order

How to play the puzzle

We hosted the puzzle game under:
https://www.ryerson.ca/~wdp/workflow-game/
We encourage you to try it yourself.

With the puzzle, we are pursuing two different didactic
goals. In the first case, we like to teach the sequence of
different tasks for a certain workflow. Here we marked
the cards either by a number or by some other strong
hint how to place the cards, e.g. by some color scheme.
In the second case, we are asking the player to do his
or her own research about the sequence of processes
and resources. For that, there is information attached
to each card. If the player hoovers over a card, he or
she will see a short statement at the footer about what
the card represents in a yellow typeface. If that is not
enough, a double click opens a window displaying a lon-
ger explanation in a pop up (framed in red color) giving
some hints concerning the previous and next cards.

A counter counts the successful placements of cards as
well as the number of failed attempts. We would consid-
er this player best, who got the lowest number
of wrong tries.

All yellow cards in Figure 1 represent processes, the gray
one a group of processes (Interpreting, Rendering, and
Screening) and all blue ones resources. The six card in the
top row have already been moved to the correct posi-
tion, the cards on the lower part have not. The small red
information on the white background is saying that 32%
of the cards are on the right position and two attempts
for moving a card failed (because it was the wrong card).

The player receives some feedback when he or
she lays out a card. If it is correct, a tone sounds
and a textual confirmation comes up. If the card is

https://www.ryerson.ca/~wdp/workflow-game/

Journal of Graphic Engineering and Design, Volume 12 (1), 2021. 7

wrong, there is either a special indication of why
the card is wrong or just a general objection.

Figure 2 shows another example of a puzzle game with
a different card design. Here, only a small part of the
overall production workflow is modeled, i.e. the RIPing
process group.

 » Figure 2: Puzzle RIPping

Tools

We wrote the puzzle game in HTML 5 (W3C, 2017) and
JavaScript (w3schools.com, 2020a). We deployed the
JavaScript libraries jQuery version 3.5.1 and jQuery
UI version 1.12.1 (The jQuery Foundation, 2020). Edit-
ing the code, we used Brackets 1.14 (Adobe, 2020).
For testing and debugging the HTML and JavaScript,
we loaded the code into Google Chrome (Version
83.0.4103.61) and Mozilla Firefox (version 76.0.1). As
a web server is necessary for the test, we installed
XAMPP, version 7.4.6 for Windows, (Apache Friends,
2020) locally, in particular the Apache HTTP Server.
All of these tools can be downloaded free of charge.

Implementation

We defined a class Card to store the relevant data
for each card like the file name, the dimensions, the

neighboring cards and the HTML object (see Figure 3).
The data we either defined directly in the script, e.g.

c301= new Card('card301','card301.png',
93,61,'card302',null,null'text info');

or by an import of a JSON file. For the specification of
this data interchange format see (ECMA, 2017), for an
easy online learning (w3schools.com, 2020b). Figure
4 shows an excerpt of our JSON file. The import works
via HTTP. The jQuery method getJSON() reads the JSON
data into the script. The so-called response function
results in (key,value) tuples that need to be mapped to
all Card object. Please note that the method getJSON()
normally runs in the background (asynchronous), i.e.
it take a while until the data is read in. Since the script
should not continue in our case, before all data is avail-
able (otherwise we get many undefined errors), we need
to switch to the synchronous modus beforehand by

$.ajaxSetup({ async: false});

Ajax is an acronym for Asynchronous JavaScript and XML.

For each Card object, we are creating dynamically
an HTML element <div>. Using the jQuery function
addClass() and innerHTML, we can complete the ele-
ment by defining a class for it as well as the usual HTML
sub-element with property src specifying the path
to the image file. These elements we have to append
to the HTML Document Object Model (DOM) structure.
Moreover, we added the HTML objects to the Card
structure – see objectHTML in Figure 3. All Card objects
of a game are pooled in an array that we called cardOb-
jects. With this array, we have all necessary information
for all cards ready to lay them down on the window.

 » Figure 1: Puzzle "Stitched brochure"

88

For moving the cards is very easy to implement,
because it is a given jQuery method called draggable.

 » Figure 3: Class Card hold information for each card

 » Figure 4: JSON data of a Card object

A card is supposed to snap to the correct position if it
is close to its predecessor card, which in turn has been
put down already correctly to the process/resource
structure. To archive that, we have to check two things

i. Is the card close to a card, which
needs a neighbor?

ii. Is it the correct card in the process/resource chain?

For evaluating situation in i) we defined “hotspots”. A
hotspot is an (x, y) position to which another card can
be placed. Figure 5 shows the constructor of our class
hotspot. Since our workflows need not to be strictly
linear but rather allow ramifications, we might have sev-
eral hotspots in the same time. In Figure 6, we marked
each hotspot with a green asterisk. Therefor we defined
an array of hotspot objects. Each card, which the play-
er drags to some place, has be checked if it is close to
one of those hotspots. In each hotSpot, information is
stored, which is the correct neighbor. The trickiest part
of the script, however, is the positioning of the card.

Depending if the predecessor card has an output “knob”
or not, the card must me positioned differently. There
are more situations like that which needs extra care.

 » Figure 5: Constructor of the class hotSpot

 » Figure 6: Each hotspot is marked with an asterisk

Conclusion

The Online Workflow Puzzle illustrates the trends
toward “gamification” and asynchronous learning
in the online environment. Details on this topic can
be found in (Kim et al., 2018). As compared with
the original printed “card deck,” the online version
enables a wider audience of graphic arts students to
explore various workflow steps and understand the
connection between them. The configurable nature
of the puzzle enables it to evolve with new technol-
ogies and the workflows in which they are used.

Many details are still missing in this puzzle game, like a

• cards with more than one inter-
faces for output resources,

• support for more than one starting point,
• processing more than one JSON file with an

automatic extension of workflow choice in
the UI when importing new JSON data.

Journal of Graphic Engineering and Design, Volume 12 (1), 2021. 9

Finally, the game could have a completely different
architecture in order to support “arbitrary” work-
flows and not just predefined ones. That is, the front
end (web browser) could have access to a superset of
cards in unlimited numbers. The cards are dynamically
generated by the software according to the player’s
choice of inputs and outputs for all four edges. The
production configuration, which the player constructs,
is sent to a backend software for evaluation. The back-
end software works with a knowledge base, consisting
of rules that can be edited independently. This way,
configurations that contradict one or more rules (as
the printing process is followed by the imposition
process) could be detected and warning could be for-
warded to the frontend and ultimately to the player.

References

Adobe (2020) Brackets. Available from: http://brackets.
io/ [Accessed 28th August 2020].

Apache Friends (2020) XAMPP. Available from: https://
www.apachefriends.org/de/index.html [Accessed
28th August 2020].

CIP4 (2020a) JDF Specification 1.7 final. Available from:
https://confluence.cip4.org/display/PUB/JDF [Ac-
cessed 28th August 2020].

CIP4 (2020b) XJDF 2.1 final. Available from: https://con-
fluence.cip4.org/display/PUB/XJDF [Accessed 28th
August 2020].

ECMA (2017) The JSON Data Interchange Syntax. 2nd ed.
Geneva, ECMA International. Available from: https://
www.ecma-international.org/publications/files/EC-
MA-ST/ECMA-404.pdf [Accessed 28th August 2020].

Kim, S., Song, K., Lockee, B. & Burton, J. (2018) Gami-
fication in Learning and Education. Cham, Springer.
Available from: doi: 10.1007/978-3-319-47283-6

The jQuery Foundation (2020) jQuery 3.5.1. Available
from: https://jquery.com/ [Accessed 28th August
2020].

W3C (2017) HTML 5.2. Available from: https://www.
w3.org/TR/html52/ [Accessed 28th August 2020].

w3schools.com (2020a) JavaScript Tutorial. Available
from: https://www.w3schools.com/js/DEFAULT.asp
[Accessed 28th August 2020].

w3schools.com (2020b) JSON – Introduction. Available
from: https://www.w3schools.com/js/js_json_intro.
asp [Accessed 28th August 2020].

© 2021 Authors. Published by the University of Novi Sad, Faculty of Technical Sciences, Department of Graphic Engi-
neering and Design. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution license 3.0 Serbia (http://creativecommons.org/licenses/by/3.0/rs/).

http://brackets.io/
http://brackets.io/
https://www.apachefriends.org/de/index.html
https://www.apachefriends.org/de/index.html
https://confluence.cip4.org/display/PUB/JDF
https://confluence.cip4.org/display/PUB/XJDF
https://confluence.cip4.org/display/PUB/XJDF
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://doi.org/10.1007/978-3-319-47283-6
https://jquery.com/
https://www.w3.org/TR/html52/
https://www.w3.org/TR/html52/
https://www.w3schools.com/js/DEFAULT.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp

