
Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 39

Introduction

Per-pixel displacement mapping (Patterson, Hoggar &
Logie, 1991) is a technique based on texture mapping
(Catmull, 1974; Blinn & Newell, 1976). It is inspired at the
same time by bump mapping (Blinn, 1978; Peercy, Airey &
Cabral, 1997) that proceeds on pixels of the microreliefs

texture, and the displacement mapping (Cook, 1984) that
proceeds on the vertex of the 3D mesh. Texture mapping
associates a two-dimensional image with a three-dimen-
sional surface using a function called parameterization.
This function maps each vertex (x, y, z) of the mesh sur-
face, with a pair of coordinates (s, t) representing a pixel
of the texture (Figure 1).

Adnane Ouazzani
Chahdi 1
Anouar Ragragui 1
Akram Halli 2
Khalid Satori 1

1 Sidi Mohamed Ben Abdellah
University, Faculty of Science
Dhar EL Mahraz LISAC Laboratory,
Fez, Morocco
2 Moulay-Ismaïl University
FSJES-UMI OMEGA-LERES
Laboratory Meknes, Morocco

Corresponding author:
Adnane Ouazzani Chahdi
e-mail:
adnaneouazzanichahdi@gmail.com

First recieved: 20.6.2021.
Revised: 22.9.2021.
Accepted: 24.9.2021.

ABSTRACT

Per-pixel displacement mapping is a texture mapping technique that adds
the microrelief effect to 3D surfaces without increasing the density of their
corresponding meshes. This technique relies on ray tracing algorithms to find
the intersection point between the viewing ray and the microrelief stored in
a 2D texture called a depth map. This intersection makes it possible to deter-
mine the corresponding pixel to produce an illusion of surface displacement
instead of a real one. Cone tracing is one of the per-pixel displacement map-
ping techniques for real-time rendering that relies on the encoding of the
empty space around each pixel of the depth map. During the preprocessing
stage, this space is encoded in the form of top-opened cones and then stored
in a 2D texture, and during the rendering stage, it is used to converge more
quickly to the intersection point. Cone tracing technique produces satisfacto-
ry results in the case of flat surfaces, but when it comes to curved surfaces,
it does not support the silhouette at the edges of the 3D mesh, that is to say,
the relief merges with the surface of the object, and in this case, it will not be
rendered correctly. To overcome this limitation, we have presented two new
cone tracing algorithms that allow taking into consideration the curvature
of the 3D surface to determine the fragments belonging to the silhouette.
These two algorithms are based on a quadratic approximation of the object
geometry at each vertex of the 3D mesh. The main objective of this paper is
to achieve a texture mapping with a realistic appearance and at a low cost
so that the rendered objects will have real and complex details that are vis-
ible on their entire surface and without modifying their geometry. Based on
the ray-tracing algorithm, our contribution can be useful for current graphics
card generation, since the programmable units and the frameworks associat-
ed with the new graphics cards integrate today the technology of ray tracing.

KEY WORDS
Real-time rendering, texture mapping, per-pixel displacement mapping,
ray-tracing, cone tracing, silhouette correction, quadratic approximation

Per-pixel displacement mapping using
cone tracing with correct silhouette

Original scientific paper http://doi.org/10.24867/JGED-2021-4-039

https://orcid.org/0000-0003-4463-5916
https://orcid.org/0000-0001-5290-4130
https://orcid.org/0000-0002-5188-4032
http://doi.org/10.24867/JGED-2021-4-039

 » Figure 1: Parameterization σ(u,v) and inverse param-
etrization σ-1(x,y,z) matching a surface S of R3 with the
domain M of R2

Texture mapping does not produce any microrelief ef-
fects and the colors of the pixels representing the object
in the scene always remain the same regardless of the
lighting conditions (Figure 2a). To solve this problem,
Blinn introduced bump mapping (Blinn, 1978) based on
the disturbance of the surface normals in the function
of a depth map (Figure 3b). The disruption of normals
produces an illusion of small displacements and pro-
duces a microrelief effect (Figure 2b). The displacement
mapping uses the depth map in another way. It consists
of displacing the vertices of the surface according to the
values stored in the depth map. For this, the mesh must
be subdivided so that it adapts to the texture resolution
(depth map), which generates a lot of graphic primitives
(vertices and polygons) to be processed (Figure 2c). The
main goal of per-pixel displacement mapping is to have
the same rendering as displacement mapping but with-
out increasing the density of the base mesh (Figure.2d).
It consists of reducing the number of graphics primitives
while retaining the overall visual quality of the scene.

Figure 2 shows the difference between texture mapping
techniques. As shown in the figure, the mesh density is
the same in images (a), (b), and (d) but per-pixel displace-
ment mapping allows rendering very detailed geometry.
And compared to displacement mapping (c), per-pixel
displacement mapping produces the same result but at a
very low cost.

 » Figure 2: Comparison of the different texture mapping
techniques (Halli et al., 2008). (a) Texture mapping. (b)
Bump mapping. (c) Displacement mapping. (d) Per-pix-
el displacement mapping

Per-pixel displacement mapping is based on three main
elements: the displacement map, the tangent space,
and the ray-tracing algorithm. The displacement map
(Figure 3) is a two-dimensional image whose pixels are
not used to store colors, but geometrical data (i.e. depths
and normals). In the α channel, we store the depths as-
sociated with the microrelief mapped on the 3D surface.
The other three channels: red, green, and blue, are used
to store the three x, y, and z components of the normal,
which are calculated from the depths. Since the z
component of the normal can be retrieved as a function
of the two others, the blue channel can be released to
store other data used by certain techniques such as cone
tracing. In this case, the displacement map can be named
according to this technique (i.e. the Cones Map as shown
in Figure 3d).

 » Figure 3: (a) The corresponding texture. (b) The depth
map. (c) The components x, y, and z of the normal. (d)
A cones map that stores the depths in the α channel,
the x and y components of the normal are stored in the
red and green channels, and the blue channel stores
the cones’ radius

As shown in figure 4, the tangent space is a local space
associated with each vertex constituting the 3D mesh
(Peercy, Airey & Cabral, 1997). It is calculated using the
normal to the vertex and the associated texture coordi-
nates. The viewing ray vector and the light vector must
be expressed in this space.

 » Figure 4: Tangent space. It is a local space constituted
by three vectors: the normal, binormal, and tangent
associated with each vertex of the 3D mesh

Ray tracing is an algorithm that searches the intersec-
tion of the viewing ray and the microrelief stored in the
displacement map (Figure 5 and Figure 6). This search is
performed in texture space for each pixel resulting from
the 3D mesh. The main problem of per-pixel displace-
ment mapping is to find the first intersection point.

40

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 41

As shown in figures 5 and 6, the first intersection is rep-
resented by the point P along the viewing ray V. So, to
have an illusion of relief displacement, the fragment (s,
t) will be textured using the texel (x, y) instead of (s, t).

 » Figure 5: Ray tracing in the depth map (Halli et al.,
2008). (a) 3D view of the ray tracing. (b) The relief’s
slice including the viewing ray. (c) The depth map. (d)
The corresponding texture. (s,t) is the starting point.
The main problem of per-pixel displacement mapping is
to find the first intersection (x,y) of the viewing ray and
the microrelief. So, the fragment (s,t) will be textured
using the texel (x,y) instead of (s,t)

 » Figure 6: Ray tracing in the depth map. The first inter-
section point between the viewing ray and the microre-
lief is the P(x, y, z)

 » Figure 7: Search for the intersection with iterations
(Linear search). The number of iterations and the size
of the displacement step must be defined in advance.
The ti parameter represents the sum of the step size
at iteration i

As shown in figures 5 and 6, the point P can be expressed
as follows:

 (1)

The speed constraint does not allow an exact search,
which makes it necessary to find a point as close as pos-
sible to the intersection point. The different approaches
to performing this search are presented in (Szirmay-Kalos
& Umenhoffer, 2008). To better locate the first intersec-
tion, the number of iterations is predefined in advance.
The size of the displacement step is defined according to
the technique used, which can be constant (Figure 7) or
variable (Figure 8). During the search for the intersection,
we use the following general formulas:

 (2)

 (3)

 » Figure 8: Search for the intersection with iterations and
with an encoding of the empty space (Sphere tracing).
The number of iterations must be defined in advance
and the size of the displacement step is calculated as
a function of the sphere parameters encoded in a pre-
processing stage. The ti parameter represents the sum
of the step size at iteration i.

Where v is the normalized viewing ray vector expressed
in the texture space having a normalized depth (i.e. v/vz)
involving vz=1.

These two formulas are used together to determine the
point Pi+1. At iteration i+1, the parameter ti+1 makes it
possible to determine the position of the point P along
with vector v, and the step parameter makes it possible
to determine its displacement, the value of which is
calculated according to the used technique.

We note that the viewing ray is reversed during the
search for the intersection. It means that we start from
the eye (camera) towards the microrelief.

Contribution

Per-pixel displacement mapping suffers from three
main problems, namely, the time to compute the dis-
placement map, the search of the intersection between
the viewing ray and the microrelief stored in the dis-
placement map, and the treatment of the silhouette.

The preprocessing is the phase in which we calculate
a displacement map for each texture. The computing
speed depends on the used algorithm. An improvement
has been proposed in (Halli et al., 2008) which consists
of using linear algorithms instead of quadratic ones and
which has considerably increased the computing speed.

To find the intersection point, we use ray-tracing algo-
rithms. The best technique in this sense is cone tracing
(Figure 9).

 » Figure 9: Cone tracing on the displacement map. At
each iteration, the next position Pi+1 of the viewing ray v
is calculated as a function of the current position Pi
and the cone parameters which are the height D[Pi]
and its radius.

This technique relies on the encoding of the empty space
to converge more quickly. This space is stored in a texture

called a cones map (Figure 3d). Improvements concern-
ing the search of the intersection (ray-tracing algorithm)
have been proposed in (Halli et al., 2008; Ouazzani
Chahdi et al., 2017; Ouazzani Chahdi et al., 2018).

Despite the improvements proposed in (Halli et al.,
2008; Ouazzani Chahdi et al., 2017; Ouazzani Chahdi et
al., 2018), the silhouette problem persists. The silhou-
ette is visible at the edges of the 3D object (Figure 10,
Figure 11). To explain this problem, we have Figure 10
which shows a flat and curved surface. for flat surfaces,
the viewing ray always pierces the reliefs (Ray A), that
is to say, there we will always have an intersection. But
for curved surfaces, sometimes the viewing ray does
not pierce the relief (Ray B), that is to say, there is no
intersection. Then, the ray tracing algorithm will not
find an intersection point or it will find an erroneous
one, and in this case, the pixel must be discarded to
be able to have a correct treatment of the silhouette.

 » Figure 10: Highlighting the silhouette problem. (top)
a flat surface always allows us to have an intersection
with the relief. (bottom) with a curved surface, the
viewing ray can leave the surface without piercing the
relief. The pixel (s,t) in this case belongs to the silhou-
ette

The main contribution proposed in this paper compared
to the improvements proposed in (Halli et al., 2008;
Ouazzani Chahdi et al., 2017; Ragragui et al., 2017; Ouaz-
zani Chahdi et al., 2018; Ragragui et al., 2018a; Ragragui,
et al., 2018b; Ragragui et al., 2020) is the resolution of
the silhouette problem.

Indeed, as shown in Figure 11b, the cone tracing tech-
nique does not support the treatment of the silhouette.
Based on this observation, this paper presents two new
cone-tracing algorithms based on a quadratic approx-
imation at each vertex of the 3D mesh (Jean, 2002;
Oliveira & Policarpo, 2005). The first algorithm consists
of rectifying the viewing ray after each new displacement
(after the cone tracing), and the second one consists
of rectifying the cone before each new displacement
(before the cone tracing).

42

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 43

Figure 11 shows a comparison of a cylinder rendered
with the cone tracing technique without and with cor-
rection of the silhouette and by highlighting the polyg-
onal mesh. We notice that the silhouette is not visible
on the 3D object when rendered without the correct
silhouette (Figure 11b); this problem is surmounted by
exploiting the parameters of the quadratic surface to
take into account the curvature of the 3D object. Figure
11c and Figure 11d show the same 3D model rendered
by our approach that provides a correct rendering.

 » Figure 11: Rendering of a cylinder with cone tracing
techniques. (a) Basic mesh using 56 triangles. (b)
Without the correct silhouette (original technique). (c),
(d) With correct silhouette (proposed technique). We
notice in (b) that the surface of the cylinder and the
reliefs are confused. This problem has been solved by
our approach in (c, d)

Contrary to the displacement mapping, the silhouette
is generated without needing to change its geome-
try and by using a minimal number of triangles (Fig-
ure 11a). Figure 12 shows an example of a scene that
can be realized by the contribution of this paper.

 » Figure 12: Rendering of a scene by the relaxed cone
mapping with the correct silhouette

The main advantage of our contribution is that it can be
integrated into the new graphic card units. Indeed, the
programmable pipeline model for ray tracing has been
introduced in (Parker et al., 2013). Currently, the frame-
works and the programmable units associated with the
new graphics cards integrate a programmable GPU-accel-
erated ray-tracing that provides a simple, recursive, and
flexible pipeline for accelerating ray-tracing algorithms.

Related Works

The displacement mapping was introduced in (Cook,
1984). It consists of displacing each vertex of the 3D mesh
according to the normal with a value given by the height
map. To have better rendering quality, the basic mesh
must be subdivided into sub-polygons to be adapted to
the height map resolution, which leads to a very high
number of primitives processed by the graphic cards.

Contrary to the displacement mapping, which changes
the geometry (Cook, 1984), the bump mapping occurs
only at the level of the shading (Blinn, 1978; Peercy, Airey
& Cabral, 1997). The latter being a function of the nor-
mals, the disruption of this one will cause a microrelief
illusion. So instead of creating the displacement surface,
just calculate its normal and use it in a shading formula
to simulate the surface details. When it comes to min-
iature reliefs, this technique produces a satisfactory
rendering, but it is limited for shading and self-occlusion.
For a large elevation of reliefs, the per-pixel displacement
mapping has been proposed in (Patterson, Hoggar &
Logie, 1991). For shading, the use of a horizon map has
been introduced in (Max, 1988; Sloan & Cohen, 2000).

To avoid the calculation of the normal during the ren-
dering stage, a normal mapping has been introduced in
(Peercy, Airey & Cabral, 1997) that consists of storing the
normals of the microrelief in a texture called: normal
map. For real-time rendering, several implementations
have been proposed in (Ernst et al., 1998; Kilgard, 2000;
Sung Kim, Hyun Lee & Ho Park, 2001; Lee et al., 2007).

Parallax mapping is an extension of the bump mapping
(Kaneko et al., 2001; Welsh, 2004; McGuire & McGuire,
2005; Premecz, 2006). This technique performs an
approximate search for the intersection between the
viewing ray and the relief contained in the displacement
map. This point is defined by the intersection of the
viewing ray and the horizontal line, which passes through
the height of the relief at the current point. The main
advantage of this technique is the addition of the paral-
lax effect. However, it is limited to irregular microrelief.
Improvements were introduced in (Brawley & Tatarchuk,
2004; Tatarchuk, 2006) to manage the shading correctly.

Relief mapping introduced in (Policarpo, Oliveira &
Comba, 2005; Policarpo & Oliveira, 2006) is based

on relief texture mapping (Oliveira, 2000; Oliveira,
Bishop & McAllister, 2000). This technique calcu-
lates the intersection point by two stages, in the
first one, it determines the interval where the first
intersection is located, and in the second one, the
intersection point is refined using a binary search.

The binary search does not take into account the depths
of the microrelief. To overcome this problem, a linear
search coupled with a secant one makes it possible
to converge even more quickly by using the depths of
the microrelief (Brawley & Tatarchuk, 2004; Yerex &
Jagersand, 2004; Tatarchuk, 2006). An improvement
of the relief mapping technique presented in (Ouazzani
Chahdi et al., 2018) consists of choosing the number of
iterations dynamically according to the relief’s depth.

To converge rapidly towards the first intersection point,
Donnelly introduced the notion of coding a conserva-
tive space in the sphere tracing technique (Donnelly,
2005). This is the first method that is based on the
calculation of the empty space to converge quickly to
the first intersection. This space is calculated during the
preprocessing stage and during the rendering stage,
a sphere tracing allows each iteration to approach
significantly the first intersection with the relief.

The cylinder tracing was introduced in (Baboud &
Decoret, 2006a). The preprocessing stage of this tech-
nique defines for each pixel of the depth map, a radius
of a cylinder inside which, no viewing ray can pierce the
relief more than once. During the search for the intersec-
tion, this radius allows moving forward without the risk
of skipping the first intersection. The second step is to
perform a binary search between the last two positions.

The cone tracing technique introduced in (Paglieroni &
Petersen, 1994; Dummer, 2006; Policarpo & Oliveira,
2007) proposed to calculate the empty space as a form
of top-opened cones using 2D texture. The technique
has been proposed in two versions, the conservative
technique (Paglieroni & Petersen, 1994; Dummer, 2006)
and the relaxed one (Policarpo & Oliveira, 2007). Both
versions were subsequently improved in (Halli et al.,
2008). These improvements consist firstly of using lin-
ear algorithms O(n) instead of quadratic ones O(n²) to
compute the conservative and the relaxed cone. Sec-
ondly, calculating and storing the cones’ radius instead
of the cones’ ratios thereby having cone angles to the
order of π/2 rather than π/4, and finally extending the
technique to support the non-square texture using ellip-
tical rectification of cones during the rendering stage.

The third version of the cone has been proposed in
(Ouazzani Chahdi et al., 2017), it consists of using a hybrid
cone which is located between the conservative and the
relaxed one so that the cone tracing pierces the relief
only once and without the need for binary research.

Another way to calculate the empty space around
a texel is to use a dilatation and an erosion map
(Kolb & Rezk-Salama, 2005). These two maps are
calculated from the depth map and allow having at
each texel a secure region. The successive intersec-
tions of the viewing ray with these regions make it
possible to converge to the intersection point.

Pyramidal displacement mapping introduced in (Oh, Ki &
Lee, 2006; Tevs, Ihrke & Seidel, 2008) makes it possible
to create a pyramidal structure of the depths by calculat-
ing in each time a map that is four times smaller than the
previous one and taking the maximum of the depth of
each group of four pixels. The intersection point between
the viewing ray and the depths is obtained by the succes-
sive intersections with the horizontal lines representing
the maximum depth of each level of the pyramid.

Per-pixel extrusion mapping consists of extruding the
3D models according to a binary form stored in a 2D
texture without perturbing the basic mesh (Halli et al.,
2009). The empty space is calculated by using the Euclid-
ean Distance Transform EDT described in (Danielsson,
1980) and stored in a 2D texture called distance map,
the normals of the extruded form are calculated from
this later. The binary form, the distance map, and the
normals are stored in a 2D texture called a shape map.
Improvements were proposed to correct the intersec-
tion point between the viewing ray and the extruded
form and to extend the extrusion algorithm for creating
the outline extruded surfaces (Ragragui et al., 2017).

The algorithms of extrusion and revolution have been
combined with a shape box to create extruded and
revolved 3D objects without polygonal meshes (Halli et
al., 2010). The two algorithms are based on the shape
map. The extrusion consists of lifting the 2D binary form
stored in the shape map, on the other hand, the revolu-
tion uses this one to create a revolved object around a
revolution axis. For the texturing of revolved objects, we
use one of the two projections, cylindrical or spherical.
A rectification concerning these two types of projec-
tion has been proposed in (Ragragui, et al., 2018b).

3D objects created by extrusion or by revolution do not
present any microrelief effect, that is to say, they are tex-
tured by the classic texture mapping technique. To solve
this problem, two improvements have been proposed,
one for extrusion (Ragragui et al., 2020) and the other for
revolution (Ragragui et al., 2018a), which consists of mak-
ing a combination with the bump mapping technique.

To manage the silhouette, four approaches have
been proposed. The silhouette of an object is vis-
ible on the edges of the associated 3D mesh.

The first solution is to use a local representation of the
3D surface at each vertex. Two local representations

44

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 45

have been proposed. The first consists of using a qua-
dratic approximation represented by two parameters
(Jean, 2002; Oliveira & Policarpo, 2005). And the second
consists of using a local space for each vertex (Chen &
Chang, 2008; Na & Jung, 2008). The two representa-
tions are calculated and associated with each vertex
during the preprocessing stage. During the rendering
stage, the solution adopted makes it possible to deter-
mine the fragments belonging to the silhouette.

Shell mapping proceeds to the extrusion of each trian-
gle of the mesh according to the normals of its three
vertices (Hirche et al., 2004). The extrusion gives a
prism constituted by eight triangles that will have to
be included in the rendering stage. To avoid some
discontinuity defects related to the bilinear interpola-
tion, the prism is subdivided into three tetrahedrons
using an algorithm described in (Shirley & Tuchman,
1990). The use of barycentric coordinates introduced in
(Porumbescu et al., 2005) makes it possible to define a
relation between each 3D point contained in the prism,
and a single texel in the 3D displacement map. The
use of semi-transparent 3D textures allows supporting
some more advanced functionalities (Dufort, Leblanc
& Poulin, 2005). A smoothing function coupled with
the patches of coons makes it possible to eliminate
strongly the distortions, and thus produces very satis-
factory results (Jeschke, Mantler & Wimmer, 2007).

View-dependent displacement mapping (Wang et al.,
2003; Wang et al., 2004) consists of calculating, for
each viewing ray, the distance between each point of
a polygon and the displacement surface. To be able to
manage the silhouette, the curvature of the base surface
must also be taken into consideration. A five-dimen-
sional is thus defined to store the texture coordinates,
the spherical coordinates of the viewing ray, and the
curvature index of the surface along the viewing ray.
This function represents a large amount of data, for this
reason, it is compressed and stored as a 3D texture.

Image-based modeling and rendering techniques
(IBMR) allow creating entire 3D objects without polyg-
onal meshes based on per-pixel displacement mapping
(Oliveira, Bishop & McAllister, 2000; Yerex & Jagersand,
2004; Baboud & Décoret, 2006a; Baboud & Decoret,
2006b; Policarpo & Oliveira, 2006; Ritsche, 2006;
Toledo, Lévy & Levy, 2008; Toledo, Wang & Lévy, 2008;
Halli et al., 2010; Ragragui et al., 2017; Ragragui et al.,
2018a; Ragragui, et al., 2018b; Ragragui et al., 2020).
Despite the diversity of the objects that can be created
using these techniques, the silhouette problem persists.
Once this problem is resolved and seen that modern
graphics cards integrate and implement ray tracing algo-
rithms, these techniques represent a better alternative
to displacement mapping for creating 3D objects.

Cone tracing technique

In the pre-processing stage, the cone tracing technique
calculates the empty space around each pixel of the
depth map as a top-opened cone and stores its radius
in a displacement map (Halli et al., 2008) (i.g. alpha
channel). Then we use this space during the search for
the intersection to converge quickly. This technique
has been presented in two versions, the conservative
technique and the relaxed one. In the first one, the
cone is defined so that the cone tracing does not pierce
the relief (Figure 13), and in the second one (Figure
14), the cone is defined so that the cone tracing can-
not pierce the relief more than once, and then, the
intersection point is refined using a binary search.

In both cases, the next ti+1 parameter is given by:

 (4)

The next point Pi+1 is computed with the formu-
la (3), where D[Pi] is the depth at point Pi, in this
case, it represents the height of the cone.

 » Figure 13: Ray tracing in the cones map (cross-section).
In each iteration, the following position Pi+1 of the view-
ing ray is calculated according to the current position Pi
and the value of the ti+1 parameter

 » Figure 14: The binary search phase with the relaxed
cone tracing. It is made between the last position Pi+1
and the starting position P0 of the viewing ray

The third version of the cone has been proposed in
(Ouazzani Chahdi et al., 2017), which is about the hybrid
cone (Figure 15). The principle of this contribution is
to use a cone that is located between the conserva-
tive cone and the relaxed one so that the cone tracing
pierces the relief only once and without the need for
binary research. This contribution further improves
rendering quality and increases rendering speed.

 » Figure 15: The hybrid cone is located between the
conservative and the relaxed one (Ouazzani Chahdi
et al., 2017)

Cone tracing (in its three versions) remains effective
for real-time rendering on flat surfaces, but when it is
about of the curved surfaces, the silhouette is not vis-
ible at the edges of the rendered objects (Figure 16).

 » Figure 16: Rendering of a cylinder with the original
cone-tracing techniques. The silhouette is not visible at
the edges of the 3D objects. That is to say, the reliefs
elevations coincide with the surface of the cylinder

To solve this problem, we propose to use the qua-
dratic approximation approach to exploit its param-
eters in the cone-tracing phase to determine the
silhouette fragment. The proposed contribution
is based on the originals cone tracing techniques
(Halli et al., 2008) and the quadratic approximation
approach (Jean, 2002; Oliveira & Policarpo, 2005).

Quadratic approximation

The quadratic approximation was used with the relief
mapping technique in (Oliveira & Policarpo, 2005), it
consists of calculating an approximate quadratic surface
for each vertex of the 3D mesh during a preprocess-
ing stage, and in the rendering stage, this surface is
used to adapt the ray-tracing process so that it takes
into consideration the form of the mesh geometry.

The approximate quadratic surface is represented by
two parameters a and b so that:

 (5)

where (x, y, z) are the coordinates of the
processed vertex.

These parameters are calculated by using the quadrics
(Jean, 2002): let E be the set of the triangles shar-
ing a vertex mk(xk, yk, zk), and let M = {m1, m2, …, mn}
the set of the vertices in E. All the vertices in M are
expressed in the tangent space associated with mk.
Given M ' = {m1', m2', …, mn'}, where mi' = (xi', yi', zi')
= (xi – xk, yi – yk, zi – zk), the coefficients a and b are
obtained by solving the following system Ax = b:

(6)

During the rendering stage, coefficients a and b will be
interpolated for each pixel and then used to calculate
the distance between the viewing ray and the quadrat-
ic surface. We have two cases as shown in Figure 17.

 » Figure 17: Cross-section of two quadratic surfaces. On
the left surface (a), the viewing ray is inside the quad-
ric, and on the right surface (b), the viewing ray is out-
side. In both cases, the distance between the viewing
ray and the quadric Q is given by the PR segment

V is the viewing ray and lets R be a point belonging to
the quadric Q, U is the unit vector perpendicular to V
at the point P.

46

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 47

In the first case (V inside the quadric, see Figure 17a); R is
obtained by translating P by d units along the vector U:

 (7)

The distance between the point P and the quadric is
simply d, which can be obtained by substituting the
coordinates of R in the equation of the quadric:

(8)

The solution of this equation gives:

 (9)

With ∆ > 0 and

In the second case (V outside the quadric, see Figure
17b), where Δ < 0, the viewing ray is outside the quadric,
in this case, the distance d is:

 (10)

We denote by q the quadric (aPx² + bPy²) asso-
ciated with the parameters a and b.

The texture space is planar, and in the rendering stage,
the approximate surface calculated at each vertex of
the 3D mesh during the preprocessing stage is used
so that this space can be adapted to the 3D object
geometry. In reality, the texture space remains always
planar, and during the search for the intersection,
the viewing ray is rectified to correct the position of
the point Pi+1 using the characteristics of the approx-
imate surface. We denote by v and u respectively
the vector V and U expressed in the texture space.

In the first case (Figure 17a), the next point Pi+1 is
corrected by:

 (11)

Moreover, in the second case (Figure 17b), the next point
Pi+1 is corrected by:

 (12)

Since the depth of v is normalized (v/vz), so, in the
first case, the distance d must be divided by vz, and
in the second case, the quadric q must be divided
by vz², and this before normalizing the depth of v.

Figure 18 and Figure 19 show the general appearance of
the viewing ray during the search for the intersection.

 » Figure 18: The viewing ray is inside the quadric. At each
iteration, we approach the quadratic surface

 » Figure 19: The viewing ray is outside the quadric.
At each iteration, we move away from the
quadratic surface

During the linear search, the relief mapping tech-
nique (Policarpo, Oliveira & Comba, 2005) chooses
the t parameter in the interval [0, 1]. This search is
optimized in (Oliveira & Policarpo, 2005) by choos-
ing this one in the interval [0, tmax], with tmax is the
smallest t > 0 such that the distance from the view-
ing ray to the quadric is equal to 0 or 1 (Figure 20).

 » Figure 20: A ray that hits depth 1 (d = 1) in the texture
space has reached the bottom of the depth field char-
acterizing an intersection (the blue ray). On the other
hand, a ray that returns to the depth 0 (d = 0) can
be safely discarded as belonging to the silhouette
(the red ray)

To find the most accurate value, tmax must be cal-
culated by substituting (Px, Py, Pz) by (Vxt, Vyt, Vzt)
and setting d=0 and d=1 respectively in both equa-
tions (8) and (10), then solve for t. Algorithms 1 and
2 implement this optimization in both cases.

Algorithm 1: tMax1

Input: V, U, (a,b) | Output: tmax

Begin

 A ← a*V.x*V.x + a*V.y*V.y

 B ← 2*a*V.x*U.x + 2*b*V.y*U.y – V.z

 C ← a*U.x*U.x + b*U.y*U.y – U.z

 D ← B*B – 4*A*C

 If D > 0 Then

 tmax ← (B – Sqrt(D)/-2*A)

 EndIf

 D ← V.z/A

 If D > 0 Then

 tmax ← Min(tmax,D)

 EndIf

 tmax ← Abs(tmax)

End

Algorithm 2: tMax2

Input: V, q | Output: tmax

Begin

 D ← V.z*V.z – 4*q

 If D > 0 Then

 tmax ← (-V.z + Sqrt(D))/(-2*q))

EndIf

 D ← V.z/q

 If D > 0 Then

 tmax ← Min(tmax,D)

 EndIf

 tmax ← Abs(tmax)

End

During the search for the intersection, the parameter ti+1
is calculated by:

 (13)

At the end of the linear search, we check whether
the value of the t parameter is greater than tmax, if
this is the case, the pixel must be discarded, else the
intersection point is refined with a binary search.

The combination of relief mapping with quadrat-
ic approximation produces satisfactory results,
but when the depth scale is large enough or
when the viewing ray shaves the surface, defects
become visible as shown in Figure 21.

 » Figure 21: The defects are visible in the parts where the
viewing ray shaves the surface

Cone tracing with
correct silhouette

As mentioned above, the original cone tracing technique
produces satisfactory results when it is about flat surfac-
es (Halli et al., 2008), but for the curved surfaces, the
silhouette didn’t render correctly at the edges of the 3D
object. To correct the silhouette problem, we will use
the parameters of the quadratic surface to adapt the
cone tracing process so that it takes into account the
characteristics of the 3D surface. For this, we opted two
solutions. The first one uses a rectification of the view-
ing ray after each new displacement along the viewing
ray and the second one uses a rectification of the cone
before each new displacement along the viewing ray.
Algorithm 7 of this section presents an implementation
of the new cone-tracing techniques in both cases.

Rectification of the viewing ray

This rectification consists of adapting the displacements
along the viewing ray so that they take into account the
forms of the quadratic surfaces presented in Figure 17.
In both cases, the ti+1 parameter is calculated with the
formula (4).

In the first case (Figure 17a), the point Pi+1 approaches
the quadratic surface, and if there is an intersection, we
converge quickly to the depth value 1 (Figure 22). This
rectification is realized with the formula (11).

In the second case (Figure 17b), the point Pi+1 moves
away from the quadratic surface, that is to say, that we
move away from the depth value 1. And if there is no
intersection, we converge quickly to the depth value 0
(Figure 23). The rectification is realized with the
formula (12).

48

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 49

 » Figure 22: The viewing ray is inside the quadric, at
each iteration, the point Pi+1 is rectified according to the
value duti+1

 » Figure 23: The viewing ray is outside the quadric. At
each iteration, the depth of the point Pi+1 is rectified
according to the value –qti+1

2

Algorithms 3 and 4 implement this rectification. Fig-
ure 24 shows a comparison between a sphere ren-
dered without and with silhouette correction and
Figure 25 shows a torus rendered with this approach
and by highlighting the polygonal meshes.

Algorithm 3: CurvedTransformeRay1

Input: p0, v, w, C, tmax | Output: t

Begin

 t ← 0

 For i=1 To STEPS And t <= tmax Do

 p ← p0 + (v + w)*t

 radius ← C[p.x,p.y].blue

 depth ← C[p.x,p.y].alpha

 t ← t + (radius * Max(depth - p.z,

 0)/(radius +
depth*Length(v.xy))

 EndFor

End

Algorithm 4: CurvedTransformeRay2

Input: p0, v, q, C, tmax | Output: t

Begin

 t ← 0

 For i=1 To STEPS And t <= tmax Do

 p ← p0 + v*t

 p.z ← p.z - t*t*q

 radius ← C[p.x,p.y].blue

 depth ← C[p.x,p.y].alpha

 t ← t + (radius * Max(depth - p.z,

 0)/(radius + depth*Length(v.xy))

 EndFor

End

 » Figure 24: Comparison of a sphere rendered by the
original cone tracing techniques and by using the
viewing ray rectification rectification. (a) Conservative
technique. (b) Relaxed technique

 » Figure 25: Rendering of a torus by using the viewing
ray rectification approach and by highlighting the
polygonal meshes. (a) Conservative technique. (b)
Relaxed technique

The change of the camera position does not influ-
ence the rectification process or the rendering qual-
ity since the rectification is realized in real-time and
with each movement of the camera, we will have
a new image rendered with a new rectification.

Rectification of the cone

The approximate surface has two forms, concave
and convex (Figure 17). Instead of adapting the tex-
ture space to these forms, the cone is rectified so
that it is influenced by the characteristics of the
approximate surface. This rectification is realized
before the cone tracing on its parameters, name-
ly the radius and the height (cone depth).

In the first case (Figure 17a), the cone must be enlarged
so that it approaches the quadratic surface. The
rectification consists of increasing the values of the
cones parameters stored in the displacement map by
using the distance d and the vector u (Figure 26).

 » Figure 26: The quadratic surface approaches the point
Pi+1 , so we move forward rapidly towards the intersec-
tion point

The depths increase, which implies the increase of
the cones' depths (heights). The new cone depth is:

 (14)

For the cone radius, we have:

 (15)

Figure 26 shows that the displacement along the
viewing ray with the rectified cone is faster than the
base one because the displacement step increases.
At each iteration, the cone rectification advances
the Pi+1 point along the viewing ray, and we con-
verge more quickly in the case of an intersection.

In the second case (Figure 17b); the cone decreases
so that it moves away from the quadratic surface.
Indeed, the cone rectification consists of reducing

the values of its parameters stored in the displace-
ment map by using the quadric q (Figure 27).

 » Figure 27: The quadratic surface moves away from
the point Pi+1 , where the pixel belongs to the silhouette,
we will don't have an intersection, so the pixel
will be discarded

The depths decrease, which implies the decrease of
cones depths (heights), so the new cone depth is:

 (16)

we have:

therefore, the new cone radius is given by:

 (17)

Figure 27 shows that the displacement along the
viewing ray with the rectified cone is slower than the
base one because the displacement step decreas-
es. At each iteration, the cone rectification moves
back the point Pi+1 along the viewing ray, and we
diverge in the case where there is no intersection.

In both cases, the ti+1 parameter is calculated by:

 (18)

The next point Pi+1 is computed with the formula
(3). Algorithms 5 and 6 implement this rectification.
Figure 28 shows a comparison between a sphere
rendered without and with silhouette correction
and Figure 29 shows a torus rendered with this
approach and by highlighting the polygonal meshes.

Cone rectification does not depend on the depth
map; it depends only on the quadratic parameters
associated with the 3D surface. Also, the cones map
is not attached to the base geometry onto which it is

50

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 51

mapped, because the rectification process is realized
in real-time. This makes it possible to use the same
rectification process and the same texture in real-time
on different 3D objects, it means that the rectifica-
tion process and the cones map are independent of
the surface on which they will be used (Figure 30).

 » Figure 28: Comparison of a sphere rendered by
the original cone tracing techniques and by using the
cone rectification. (a) Conservative technique. (b)
Relaxed technique

 » Figure 29: Rendering of a torus by using the cone
rectification approach and by highlighting the polygo-
nal meshes. (a) Conservative technique.
(b) Relaxed technique

Algorithm 5: CurvedTransformeCone1

Input: p0, v, w, C, tmax | Output: t

Begin

 p ← p0

 t ← 0

 For i=1 To STEPS And t <= tmax Do

 radius1 ← C[p.x,p.y].blue

 depth1 ← C[p.x,p.y].alpha

 radius2 ← radius1 + t*Length(w.xy)

 depth2 ← depth1 + t*w.z

 t ← t + (radius2 * Max(depth2 - p.z,

 0)/(radius2 +
depth2*Length(v.xy))

 p ← p0 + v*t

 EndFor

End

Algorithm 6: CurvedTransformeCone2

Input: p0, v, q, C, tmax | Output: t

begin

 p ← p0 , t ← 0

 For i=1 To STEPS And t <= tmax Do

 radius1 ← C[p.x,p.y].blue

 depth1 ← C[p.x,p.y].alpha

 depth2 ← depth1 - t*t*q

 radius2 ← (radius1/depth1)*depth2

 t ← t + (radius2 * Max(depth2-

 p.z,0)/(radius2 +
depth2*Length(v.xy))

 p ← p0 + v*t

 EndFor

End

 » Figure 30: Rendering of several 3D objects in real-time
with the same cone rectification process and with
the same texture. (a) Conservative technique.
(b) Relaxed technique

The curved cone tracing algorithm

In this subsection, we present the implemen-
tation of the cone tracing algorithm with sil-
houette correction in the two approaches.

In the rendering stage, the search for the inter-
section is performed in the texture space, but the
calculations related to the quadratic approxima-
tion are performed in the tangent space where
t is equal to 1 so that the quadratic distance is
computed as the viewing ray progresses.

Algorithm 7: CurvedConeTracing

Input: (s,t), T, V, U, (Sx,
Sy, Sz), C, R, (a,b)

Output: p

Begin

 p0 ← (T.x*s, T.y*t, 0)

 v ← Normalize(V/(Sx, Sy, Sz))

 v.z ← - v.z

 vz ← v.z

 v ← v/v.z

 vR ← v*(Length(v.xy)/
(Sqrt(v.x*v.x+R*R*v.y*v.y)))

 A ← a*U.x*U.x + b*U.y*U.y

 B ← 2*a*V.x*U.x + 2*b*V.y*U.y - U.z

 C ← a*V.x*V.x + b*V.y*V.y - V.z

 D ← B*B - 4*A*C

 If D > 0 Then

 tmax ← tMax1(V, U, a, b))

 u ← Normalize(U/(Sx, Sy, Sz))

 w ← ((B - Sqrt(D))/-2*A)*u/vz

 t←CurvedTransformeR-
ay1(p0,vR,w,C,tmax)

 //t←CurvedTransforme-
Cone1(p0,vR,w,C,tmax)

 Else

 q ← a*V.x*V.x + b*V.y*V.y

 q ← Sign(q) * Max(Abs(q), 0.001)

 tmax ← tMax2(V, q)

 q ← (q/Sz)/(vz*vz)

 t←CurvedTransformeR-
ay2(p0,vR,q,C,tmax)

 //t←CurvedTransforme-
Cone2(p0,vR,q,C,tmax)

 EndIf

 If t > tmax Then

 Discard

 Else

 p ← p0 + v*t

 EndIf

// Binary search (only in the
case of relaxed cones)

 v ← (v*p.z)/2 // initial step size

 p ← p0 + v // starting point

 For i=1 To STEPS Do

 depth ← C[p.x,p.y].alpha

 v ← v/2

 If p.z < depth then

 p ← p + v

 Else

 p ← p – v

 EndIf

 EndFor

End

Results and discussion

We have implemented the pre-processing part of the
techniques discussed in this paper in C++. For ren-
dering, we have exploited the programmable units of
the GPU, namely Vertex Shader and Fragment Shader
using OpenGL/GLSL. The figures are obtained using a
Core-i7-4510U-2GH-4CPUs architecture with 8GB of
RAM and GeForce-GT-840M with 4GB of memory.

In this paper, we have implemented different techniques
of per-pixel displacement mapping, namely, conservative
cone tracing, relaxed cone tracing, and relief mapping,
to make a comparison with the proposed improve-
ments. In our implementation, we have attached the
magnification/minification method for the two camera
positions (near and far) to the displacement map (cones
map) and the color map using the same resolution
(256×256, 512×512, 1024×1024, and 2048×2048).

The images of the figures are rendered with 25 linear
steps and 5 binary steps. For the texture resolution,
we have used 512×512. Figure 24 and Figure 28 show
comparisons of a sphere rendered without and with
silhouette correction using the two rectifications, namely
the viewing ray rectification and the cone rectification.
The images of Figure 25 are rendered with the viewing
ray rectification approach and those of Figure 29 are
rendered with the cone rectification approach. Figure 30
shows several 3D objects rendered with cone rectifica-
tion using the same texture.

Figure 31 shows a comparison between the original
cone tracing techniques and the addition of the view-
ing ray rectification and cone rectification. The figure
shows clearly that the original techniques suffer from
the silhouette problem. That is to say, during the search
for the intersection point, the technique considers

52

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 53

that each processed 3D surface is flat, and does not
take into consideration its curvature. Then, the reliefs
at the edges of the 3D object are confused with its
surface, which produces an incorrect rendering. The
two proposed rectifications solved this problem.

 » Figure 31: Comparison of a cylinder rendered by the
cone tracing techniques. In the case of the original
techniques (Halli et al., 2008), the reliefs near the sil-
houette are not rendered correctly, that is to say, the
reliefs are confused with the surface of the cylinder.
On the other hand, with the help of the viewing ray
rectification and the cone rectification, the silhouette is
visible at the edges of the 3D objects

Concerning the comparison between relief mapping
with correct silhouette (Oliveira & Policarpo, 2005) and
cone tracing combined with the proposed rectifications,
we have found that the major problem is related to the
grazing angles. The combination of cone tracing with
the quadratic approximation solves this problem.

Figure 32 shows the disappearance of the arti-
facts at the grazing angles in the images rendered
by our rectifications. The same problem persists in
the case of the interpenetration of 3D objects.

The images qualities of Figure 24, Figure 25, Figure
28, and Figure 29 are close, but in some cases, where
the viewing ray or the depth scale is changed, small
differences become visible as shown in Figure 33 and
Figure 34. The figures show a comparison of a torus
rendered with the approaches proposed in this paper.

 » Figure 32: The interpenetration of two 3D objects, a
sphere, and a torus. We observe that the rendering
done by the relief mapping with the correct silhouette
present always the same problem related to the graz-
ing angles, this problem is solved by our proposed rec-
tifications as shown in the figure

 » Figure 33: Rendering of a torus by the approaches
proposed in this paper with a depth scale equal to 0.4.
(a) Conservative technique. (b) Relaxed technique. The
approach by rectification of the viewing ray at the top
and the approach by rectification of the cone at the
bottom. Rendering differences are visible on the edges

The qualities of the images rendered by the two
approaches (i.e. viewing-ray rectification and cone
rectification) seem identical. Minimal differences
can be observed when we use a minimal number
of steps (i.e. linear steps ≤ 25, binary steps ≤ 5),
but when the number of steps is greater, the qual-
ities of the rendering images become closer.

Figure 35 shows a cylinder rendered with the different
approaches discussed in this paper using two resolutions

 » Figure 34: Rendering of a torus by the four approaches of cone tracing with a depth scale equal to 0.6. (a) Conserva-
tive cone with viewing ray rectification. (b) Conservative cone with cone rectification. (c) Relaxed cone with viewing
ray rectification. (d) Relaxed cone with cone rectification. We observe minimal differences at the edges between the
different rendered images.

 » Figure 35: Rendering of a cylinder with a texture resolution of 256×256 and 2048×2048 (depth map and color map
have the same resolution). We observe that the resolution of the textures plays a very important role in the quality of
the rendered images. The images rendered with a low resolution of texture present some aliasings which are correct-
ed by using a texture with a high resolution

54

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 55

of the texture: 256×256 and 2048×2048 and two camera
positions (far and near). The figure shows that the
texture resolution plays a very important role in the
quality of rendered images; a high resolution of texture
allows having better quality and thus avoiding the alias-
ing problems.

Figure 36 shows a torus rendered with the cone tracing
with the correct silhouette using different steps
number and by highlighting the polygonal meshes.
We observe that the number of steps plays a very
important role in the appearance of the microreliefs and
the correct silhouette.

The proposal of the hybrid cone in (Ouazzani Chahdi et
al., 2017) and the dynamic relief mapping in (Ouazzani
Chahdi et al., 2018) made it possible to improve the
rendering quality for flat surfaces. But when it is about
curved surfaces, the silhouette is not treated correctly.
Indeed, figure 37 shows the difference between these
last two techniques and the proposed contributions.

Figure 38 shows the difference between a sphere and a
cylinder which are rendered by revolution-bump map-
ping (Figure 38a), extrusion-bump mapping (Figure 38b),
and cone tracing with a correct silhouette (Figure 38c).

Revolution and extrusion are based on a shape box and
the combination of the bump mapping allows adding a
microrelief effect and does not create real displacements
of the reliefs. Using a new ray-tracing algorithm, the rev-
olution creates a 3D object around an axis of revolution
based on a 2D form, and the extrusion extrudes this
form upwards.

The objects created by these two techniques are not rep-
resented by any parametric surface which allows giving
information on its curvature for each pixel, moreover, at
the extrusion or revolution phase, the curvature of the
extruded or the revolved form is not taken into account,
and in this case, the treatment of the silhouette will
be limited.

 » Figure 37: Comparison of a torus rendered by the three
techniques of cone tracing. (a) Hybrid cone (Ouazzani
Chahdi et al., 2017). (b) Dynamic relief mapping (Ouaz-
zani Chahdi et al., 2018). (c) Cone tracing with the cor-
rect silhouette. The problem concerning the silhouette
is located at the edges of the torus rendered by the two
techniques (a) and (b). This problem is solved with the
help of the two proposed rectifications

In the case of per-pixel extrusion mapping, a new
ray-tracing algorithm has been introduced in (Halli
et al., 2009). Its advantage is the acceleration of the
search for the intersection point, but the disadvan-
tage is that it only deals with extrusion and does not
take into account the silhouette treatment (Figure

 » Figure 36: Rendering of a torus by the cone tracing with correct silhouette using a different number of linear steps
(5, 10, and 20), We observe that the appearance degree of the silhouette depends on the number of the steps. The
image rendered with 20 steps presents the best correct silhouettes.

39a). The advantage of the algorithms proposed in
this paper is that they are suitable for relief or extru-
sion and solve the silhouette problem (Figure 39b).

 » Figure 39: Comparison of a torus rendered by two
techniques. (a) Per-pixel extrusion mapping (Halli et
al., 2009). (b) Cone tracing with the correct silhouette.
Both techniques use a basic polygonal mesh but the sil-
houette problem is corrected only in the torus rendered
by our approach

Figure 40 shows some extra examples with simple
high-frequency displacements and no color texture.
The 3D objects are rendered by the cone tracing
technique with the correct silhouette and by using
different depth maps and different depth values.

Figure 41 shows a vase rendered by the cone-tracing
technique with the correct silhouette and by highlighting
the basic polygonal mesh. The 3D object is rendered
with different depth maps and different depth values.
In the different images of the figure, we notice that the
silhouette is corrected whatever the depth map used.

Generally, the combination of the quadratic approxi-
mation with the cone-tracing technique produces sat-
isfactory results, but in some cases, this combination
produces holes as shown in Figure 42. This problem
is due to the use of the quadratic approximation for
the local representation of the surface at each vertex.
Because sometimes, the viewing ray pierces the relief in
the object space and leaves it in the texture space. This
problem has been also mentioned in (Jeschke, Mantler &
Wimmer, 2007; Chen & Chang, 2008; Na & Jung, 2008).

To surmount this problem, the quadratic approximation
can be replaced by a local space at each vertex of the
3D mesh (Chen & Chang, 2008; Na & Jung, 2008).

 » Figure 38: Rendering of a cylinder and a sphere. (a) Revolution with bump mapping (Ragragui et al., 2018a;
Ragragui, et al., 2018b). (b) Extrusion with bump mapping (Ragragui et al., 2017; Ragragui et al., 2020). (c) Cone
tracing with the correct silhouette. Revolved or extruded objects are rendered using a shape box and the bump
mapping allows just a microrelief effect (simulation of small displacements). The objects created by cone tracing are
rendered using a polygonal mesh and the reliefs are displaced without modifying the mesh geometry, moreover, the
proposed cone rectifications make the silhouette visible

56

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 57

Indeed, this space makes it possible to give an idea of
the curvature of the surface at each vertex, suddenly, its
exploitation makes it possible to adapt the cone tracing
so it takes into account the curvature of the surface.

To compare the rendering speed (Frames Per Sec-
ond), we used high-resolution textures 1024×1024
and 2048×2048, 35 linear steps, 10 binary steps, and

a depth scale equal to 1. Table 1 shows the difference
between the approaches discussed in this paper.

The table shows also the views on which the speed
calculation is performed. It is clear that the approach
by cone rectification is the fastest and relief mapping
with correct silhouette remains always less fast com-
pared to the proposed rectifications released during
the cone tracing phase. It is also noted that the relaxed
technique is always slower than the conservative one
because its speed is slowed down by the binary search.

As shown in Table 1 and Table 2, the rendering speed
decreases by a means of 37FPS for the viewing ray
rectification and by 24FPS for the cone rectification
compared to the originals cone tracing techniques.
This slowdown is due to the processing concerning the
correction of the silhouette. The stability of the images’
quality rendered by per-pixel displacement mapping is
influenced by the camera position and especially by the
viewing angle, indeed, the ray-tracing algorithm uses
the camera position to determine the viewing ray along
which the searching for the intersection is performed.

 » Figure 40: Rendering of different 3D objects by the
cone tracing techniques with correct silhouette and
by using simple high-frequency displacements and no
color texture

 » Figure 41: Rendering of a vase with the cone tracing
technique with correct silhouette by highlighting the
basic polygonal mesh and by using different depth
maps and different depth values

 » Figure 42: Distortions and holes are due to the qua-
dratic approximation.

Table 2
The average FPS (Frames Per Second) number of the decrease
in the rendering speed of the two proposed rectifications
compared to the original cone tracing techniques.

Viewing ray
Rectification

Cone
Rectification

Original
Conservative

Technique
36 20

Original Relaxed
Technique 38 27

In the case of grazing viewing-angles, it is necessary
to ensure that the silhouette is rendered correctly and
that the iteration number of the ray-tracing algorithm is
optimal. One of the solutions to have a stable quality is
to determine the iteration number dynamically accord-
ing to the viewing angle (Ouazzani Chahdi et al., 2018).

One must finally note that the improvements pro-
posed in this article preserve all properties and
characteristics of the cone-tracing technique with
the latest improvements (Halli et al., 2008).

Conclusion

In this article, we have presented two new cone-tracing
algorithms by combining the cone-tracing process with
the quadratic approximation. This approximation consists
of representing the 3D surface by approximate parame-
ters at each vertex constituting the corresponding mesh.

During the cone-tracing phase, the first algorithm con-
sists of using the parameters of the quadratic surface to

rectify the viewing ray. This rectification makes it possi-
ble to know whether the viewing ray pierces or leaves
the relief and it is realized after each new displacement
along the viewing ray. The second algorithm uses these
parameters to rectify the cones parameters (i.e. depth
and radius) to be influenced by the characteristics of
the approximate surface. This rectification makes it
possible to know whether the displacements along the
viewing ray make it possible to have or not an intersec-
tion and it is realized before each new displacement.

In some cases, the qualities of the rendered images of
the two approaches remain almost identical, except
for minimal differences. However, when it is about the
rendering speed (Frames Per Second), the approach by
cone rectification remains the fastest. Also, the rendering
quality of the microreliefs and the silhouette depends
on the texture resolution and the number of steps of
the cone-tracing algorithms. The choice between the
conservative and the relaxed technique, the texture res-
olution, and the number of steps can be made according
to the criterion of rendering quality/rendering speed.

The advantage of the cone tracing techniques is that
they can be combined with any silhouette correction
approach with several possible improvements. Indeed,
the processing of the silhouette depends on the ray-trac-
ing algorithm, and how the fragments, belonging to the
silhouette, are determined. So, a good coupling makes
it possible to have a better algorithm of ray tracing
and which supports the treatment of the silhouette.
Another advantage of cone tracing is that it is possible
to integrate it into the pipeline of new graphics cards
since they integrate today the ray-tracing technology.

Table 1
Comparison of the rendering speed FPS (Frames Per Second) between the discussed approaches with a torus. The approach by the
cone rectification is the fastest.

Conservative Technique Relaxed Technique

Screen
1000×600 Texture

Resolution

View
ing ray

rectification

Cone
rectification

W
ithout

rectification

View
ing ray

rectification

Cone
rectification

W
ithout

rectification
Relief Mapping

With Correct
Silhouette

1024² 210 225 227 198 210 226 202

2048² 115 127 140 107 117 141 105

1024² 230 258 280 211 227 262 197

2048² 140 148 190 130 137 168 117

Average 173 189 209 161 172 199 155

58

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 59

References

Baboud, L. & Decoret, X. (2006a) Rendering geom-
etry with relief textures. In: Proceedings of the
2006 Conference on Graphics Interface, GI '06,
7-9 June 2006, Quebec, Canada. pp. 195–201.

Baboud, L. & Décoret, X. (2006b) ‘Realistic Water
Volumes in Real-Time’, In: Proceedings of the Second
Eurographics Conference on Natural Phenom-
ena, NPH'06, 5 September, 2006, Vienna, Austria.
Goslar, Eurographics Association. pp. 25-32.

Blinn, J. F. (1978) Simulation of wrinkled surfaces. ACM
SIGGRAPH Computer Graphics. 12 (3), 286–292.
Available from: doi: 10.1145/965139.507101

Blinn, J. F. & Newell, M. E. (1976) Texture and reflec-
tion in computer generated images. ACM SIG-
GRAPH Computer Graphics. 10 (2), 266–266.
Available from: doi: 10.1145/965143.563322

Brawley, Z. & Tatarchuk, N. (2004) Parallax Occlu-
sion Mapping: Self Shadowing, Perspective-Cor-
rect Bump Mapping Using Reverse Height Map
Tracing. In: Engel, W. (ed.) ShaderX3: Advanced
Rendering with DirectX and OpenGL. Hingham,
Massachusetts, Charles River Media, pp. 135 154.

Catmull, E. E. (1974) A subdivision algorithm
for computer display of curved surfaces.
PhD thesis. The University of Utah.

Chen, Y. C. & Chang, C. F. (2008) A prism-free method for
silhouette rendering in inverse displacement map-
ping. Computer Graphics Forum. 27 (7), 1929–1936.
Available from: doi: 10.1111/j.1467-8659.2008.01341.x

Cook, R. L. (1984) SHADE TREES. In: Proceedings of the
11th annual conference on Computer graphics and
interactive techniques, SIGGRAPH’84, 23-27 July
1984, Minneapolis, Minnesota. New York, Asso-
ciation for Computing Machinery. pp. 223-231.

Danielsson, P. E. (1980) Euclidean distance mapping. Com-
puter Graphics and Image Processing. 14 (3), 227–248.
Available from: doi: 10.1016/0146-664X(80)90054-4

Donnelly, W. (2005) Per-Pixel Displacement Mapping
with Distance Functions. In: Pharr, M. (ed.) GPU
Gems 2: Programming Techniques For High-Perfor-
mance Graphics And General-Purpose Computation.
London, Addison-Wesley Professional, pp. 123–137.

Dufort, J., Leblanc, L. & Poulin, P. (2005) Interactive
Rendering of Meso-structure Surface Details using
Semi-transparent 3D Textures. In: Vision Modeling
and Visualization, 16-18 November 2005, Erlangen,
Germany. Amsterdam, IOS Press. pp. 399-406.

Dummer, J. (2006) Cone step mapping: An iter-
ative ray-heightfield intersection algorithm.
Available from: http://scholar.google.com/schol-
ar?hl=en&btnG=Search&q=intitle:Cone+Step+-
Mapping:+An+iterative+ray-heightfield+intersec-
tion+algorithm#0 [Accessed: 20th October 2021]

Ernst, I., Ruesseler, H., Schulz, H. & Wittig, O. (1998)
Gouraud bump mapping. In: Euro98: 1998 Euro-
graphics/SIGGRAPH on Graphics Hardware, 31

August 1998, Lisbon, Portugal. New York, Asso-
ciation for Computing Machinery. pp. 47-54.
Available from: doi: 10.1145/285305.285311

Halli, A., Saaidi, A., Satori, K. & Tairi, H. (2008) Per-Pixel
Displacement Mapping Using Cone Tracing. Interna-
tional Review on Computers and Software. 3 (3), 1–11.

Halli, A., Saaidi, A., Satori, K. & Tairi, H. (2009) Per-Pixel
Extrusion Mapping. IJCSNS International Journal of
Computer Science and Network Security. 9 (3), 118-124.

Halli, A., Saaidi, A., Satori, K. & Tairi, H. (2010)
Extrusion and revolution mapping. ACM
Transactions on Graphics. 29 (5), 1–14. Avail-
able from: doi: 10.1145/1857907.1857908

Hirche, J., Ehlert, A., Guthe, S. & Doggett, M. (2004)
Hardware accelerated per-pixel displacement
mapping. Graphics Interface, 153–160.

Jean, S. P. (2002) A Survey of Methods for Recov-
ering Quadrics in Triangle Meshes. ACM
Computing Surveys. 34 (2), 211–262. Avail-
able from: doi: 10.1145/508352.508354

Jeschke, S., Mantler, S. & Wimmer, M. (2007) Interactive
Smooth and Curved Shell Mapping. In: Rendering
Techniques 2007: Eurographics Symposium on Ren-
dering, EGSR'07, 25-27 June 2007, Grenoble, France.
Aire-la-Ville, Eurographics Association. pp. 351-360

Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yan-
agida, Y., Maeda, T. & Tachi, S. (2001) Detailed
Shape Representation with Parallax Mapping.
In: Proceedings of the ICAT 2001, 5-7 Decem-
ber 2001, Tokyo, Japan. pp. 205–208.

Kilgard, M. J. (2000) A Practical and Robust
Bump-mapping Technique for Today’s GPUs.
In: Game Developers Conference, GDC 2000,
9-13 March, San Jose, California. pp. 1–39.

Kolb, A. & Rezk-Salama, C. (2005) ‘Efficient Empty Space
Skipping for Per-Pixel Displacement Mapping. In:
Vision Modeling and Visualization, 16-18 November
2005, Erlangen, Germany. Amsterdam, IOS Press.

Lee, S. G., Park, W. C., Lee, W. J., Yang, S. B. & Han, T.
D. (2007) An effective bump mapping hardware
architecture using polar coordinate system. Journal of
Information Science and Engineering. 23 (2), 569–588.

Max, N. L. (1988) Horizon mapping: shadows for bump-
mapped surfaces. The Visual Computer. 4 (2),
109–117. Available from: doi: 10.1007/BF01905562

McGuire, M. & McGuire, M. (2005) Steep Parallax
Mapping. In: I3D 2005 Posters Session, ACM SIG-
GRAPH 2005 Symposium on Interactive 3D Graph-
ics and Games, 3-6 April 2005, Washington D.C.,
Washington. Available from: http://casual-effects.
com/research/McGuire2005Parallax/mcguire-steep-
parallax-poster.pdf [Accessed 20th October 2021]

Na, K.-G. & Jung, M.-R. (2008) Curved Ray-Cast-
ing for Displacement Mapping in the GPU. In:
Advances in Multimedia Modeling, 14th Interna-
tional Multimedia Modeling Conference - MMM
2008, 9-11 January 2008, Kyoto, Japan. Berlin,

https://dl.acm.org/doi/abs/10.1145/195826.197312
https://dl.acm.org/doi/abs/10.1145/965143.563322
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2008.01341.x
https://www.sciencedirect.com/science/article/abs/pii/0146664X80900544
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cone+Step+Mapping:+An+iterative+ray-heightfield+intersection+algorithm#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cone+Step+Mapping:+An+iterative+ray-heightfield+intersection+algorithm#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cone+Step+Mapping:+An+iterative+ray-heightfield+intersection+algorithm#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cone+Step+Mapping:+An+iterative+ray-heightfield+intersection+algorithm#0
https://dl.acm.org/doi/10.1145/285305.285311
https://dl.acm.org/doi/10.1145/1857907.1857908
https://dl.acm.org/doi/10.1145/508352.508354
https://link.springer.com/article/10.1007/BF01905562
http://casual-effects.com/research/McGuire2005Parallax/mcguire-steepparallax-poster.pdf
http://casual-effects.com/research/McGuire2005Parallax/mcguire-steepparallax-poster.pdf
http://casual-effects.com/research/McGuire2005Parallax/mcguire-steepparallax-poster.pdf

Springer, Berlin, Heidelberg. pp. 348–357. Avail-
able from: doi: 10.1007/978-3-540-77409-9_33

Oh, K., Ki, H. & Lee, C. H. (2006) Pyramidal displacement
mapping: A GPU based artifacts-free ray tracing
through an image pyramid. In: Proceedings of the ACM
Symposium on Virtual Reality Software and Technology,
VRST 2006, 1-3 November 2006, Limassol, Cyprus.
New York, Association for Computing Machinery. pp.
75–82. Available from: doi: 10.1145/1180495.1180511

Oliveira, M. M. (2000) Relief Texture Mapping.
PhD thesis. University of North Carolina.

Oliveira, M. M., Bishop, G. & McAllister, D. (2000) Relief
texture mapping. Proceedings of the 27th annual
conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’00, 23-28 July 2000, New Orleans,
Louisiana. New York, ACM Press/Addison-Wesley Pub-
lishing Co. pp. 359–368. doi: 10.1145/344779.344947

Oliveira, M. M. & Policarpo, F. (2005) An Efficient
Representation for Surface Details. 55 (51), 1–8.

Ouazzani Chahdi, A., Ragragui, A., Halli, A. & Satori,
K. (2017) Per-pixel displacement mapping using
hybrid cone approach. In: 2017 International
Conference on Advanced Technologies for Signal
and Image Processing (ATSIP), 22-24 May 2017,
Fez, Moorocco. New York, IEEE. pp. 1–4. Avail-
able from: doi: 10.1109/ATSIP.2017.8075577

Ouazzani Chahdi, A., Ragragui, A., Halli, A. & Satori,
K. (2018) Dynamic relief mapping. In: 2018 Inter-
national Conference on Intelligent Systems
and Computer Vision (ISCV), 2-4 April 2018,
Fez, Morocco. New York, IEEE. pp. 1–6. Avail-
able from: doi: 10.1109/ISACV.2018.8354053

Paglieroni, D. W. & Petersen, S. M. (1994) Height Distri-
butional Distance Transform Methods for Height Field
Ray Tracing. ACM Transactions on Graphics. 13 (4),
376-399. Available from: doi: 10.1145/195826.197312

Parker, S. G., Friedrich, H., Luebke, D., Morley, K., Bigler,
K., Hoberock, J., McAllister, D., Robison, A., Dietrich,
A., Humphreys, G., McGuire, M. & Stich, M. (2013)
GPU ray tracing. Communications of the ACM. 56 (5),
93. Available from: doi: 10.1145/2447976.2447997

Patterson, J. W., Hoggar, S. G. & Logie, J. R.
(1991) Inverse Displacement Mapping. Com-
puter Graphics Forum. 10 (2), 129–139. Avail-
able from: doi: 10.1111/1467-8659.1020129

Peercy, M., Airey, J. & Cabral, B. (1997) Efficient bump
mapping hardware. In: Proceedings of the 24th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’97, 3-8 August
1997, Los Angeles, California. New York, ACM Press/
Addison-Wesley Publishing Co. pp. 303–306.
Available from: doi: 10.1145/258734.258873

Policarpo, F. & Oliveira, M. M. (2006) Relief map-
ping of non-height-field surface details. In: Pro-
ceedings of the 2006 symposium on Interactive
3D graphics and games, SI3D ’06, 14-17 March
2006, Redwood City, California. New York, Asso-

ciation for Computing Machinery. pp. 55-62.
Available from: doi: 10.1145/1111411.1111422

Policarpo, F. & Oliveira, M. M. (2007) Relaxed cone step-
ping for relief mapping. In: Nguyen, H. (ed.) GPU Gems
3. London, Addison-Wesley Professional, pp. 409–428.

Policarpo, F., Oliveira, M. M. & Comba, J. L. D. (2005)
Real-time relief mapping on arbitrary polygonal
surfaces. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH
’05, 31 July - 4 August 2005, Los Angeles, California.
New York, Association for Computing Machinery, p.
935. Available from: doi: 10.1145/1186822.1073292

Porumbescu, S. D., Budge, B., Feng, L. & Joy, K. I. (2005)
Shell maps. ACM Transactions on Graphics. 24 (3),
626–633. Available from: doi: 10.1145/1073204.1073239

Premecz, M. (2006) Iterative Parallax Mapping
with Slope Information. In: 10th Central Euro-
pean Seminar on Computer Graphics, CESCG
2006, 24-25 April 2006, Castá-Papiernicka,
Slovakia. Austrian Computer Society.

Ragragui, A., Ouazzani Chahdi, A., Halli, A. & Satori, K.
(2017) Per-Pixel Extrusion Mapping: The correction
of the intersection point between the extrusion
geometry and the viewing ray. In: 2017 Intelligent
Systems and Computer Vision, ISCV 2017, 17-19
April 2017, Fez, Morocco. New York, IEEE. Avail-
able from: doi: 10.1109/ISACV.2017.8054957

Ragragui, A., Ouazzani Chahdi, A., Halli, A. & Satori, K.
(2018a) Per-pixel revolution mapping with rectification
of the texture projection. In: 2018 International Con-
ference on Intelligent Systems and Computer Vision,
ISCV 2018, 2-4 April 2019, Fez, Morocco. New York,
IEEE. Available from: doi: 10.1109/ISACV.2018.8354056

Ragragui, A., Ouazzani Chahdi, A., Halli, A. & Satori,
K. (2018b) Revolution mapping with bump map-
ping support. Graphical Models. 100, 1–11. Avail-
able from: doi: 10.1016/j.gmod.2018.09.001

Ragragui, A., Ouazzani Chahdi, A., Halli, A. & Satori,
K. (2020) Image-based extrusion with realis-
tic surface wrinkles. Journal of Computational
Design and Engineering. 7 (1), 30–43. Avail-
able from: doi: 10.1093/jcde/qwaa004

Ritsche, N. (2006) Real-time shell space rendering of
volumetric geometry. In: Proceedings of the 4th
international conference on Computer graphics and
interactive techniques in Australasia and Southeast
Asia, GRAPHITE ’06, 29 November - 2 December 2006.
New York, Association for Computing Machinery. p.
265. Available from: doi: 10.1145/1174429.1174477

Shirley, P. & Tuchman, A. (1990) A polygonal approx-
imation to direct scalar volume rendering. In:
Péroche, B. & Rushmeier, H. (eds.) Proceedings of
the 1990 Workshop on Volume Visualization, VVS
1990, 10-11 December 1990, San Diego, California.
New York, Association for Computing Machinery, pp.
63–70. Available from: doi: 10.1145/99307.99322

Sloan, P.-P. J. & Cohen, M. F. (2000) Interactive Horizon
Mapping. In: Eurographics Workshop on Rendering
Techniques, EGSR 2000, 26-28 June 2000, Brno,

60

https://link.springer.com/chapter/10.1007/978-3-540-77409-9_33
https://dl.acm.org/doi/10.1145/1180495.1180511
https://dl.acm.org/doi/10.1145/344779.344947
https://ieeexplore.ieee.org/document/8075577
https://ieeexplore.ieee.org/abstract/document/8354053
https://dl.acm.org/doi/abs/10.1145/195826.197312
https://dl.acm.org/doi/10.1145/2447976.2447997
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.1020129
https://dl.acm.org/doi/10.1145/258734.258873
https://dl.acm.org/doi/10.1145/1111411.1111422
https://dl.acm.org/doi/10.1145/1186822.1073292
https://dl.acm.org/doi/10.1145/1073204.1073239
https://ieeexplore.ieee.org/document/8054957
https://ieeexplore.ieee.org/document/8354056
https://www.semanticscholar.org/paper/Revolution-mapping-with-bump-mapping-support-Ragragui-Chahdi/7277aba4988bc559a6cf04617e91f920c78c3875
https://academic.oup.com/jcde/article/7/1/30/5809440
https://dl.acm.org/doi/10.1145/1174429.1174477
https://dl.acm.org/doi/10.1145/99307.99322

Journal of Graphic Engineering and Design, Volume 12 (4), 2021. 61

Czech Republic. Vienna, Austria, Springer. pp. 281–286.
Available from: doi: 10.1007/978-3-7091-6303-0_25

Sung Kim, J., Hyun Lee, J. & Ho Park, K. (2001) A fast
and efficient bump mapping algorithm by angular
perturbation. Computers & Graphics. 25 (3), 401–407.
Available from: doi: 10.1016/S0097-8493(01)00064-4

Szirmay-Kalos, L. & Umenhoffer, T. (2008) Displacement
Mapping on the GPU — State of the Art. Com-
puter Graphics Forum. 27 (6), 1567–1592. Available
from: doi: 10.1111/J.1467-8659.2007.01108.X

Tatarchuk, N. (2006) Dynamic parallax occlusion mapping
with approximate soft shadows. Proceedings of the
2006 symposium on Interactive 3D graphics and games
- SI3D ’06, 14-17 March 2006, Redwood City, California.
New York, Association for Computing Machinery. pp.
63-69. Available from: doi: 10.1145/1111411.1111423

Tevs, A., Ihrke, I. & Seidel, H. P. (2008) Maximum mip-
maps for fast, accurate, and scalable dynamic height
field rendering. In: Proceedings of the Symposium
on Interactive 3D Graphics and Games, I3D08, 15-17
February 2008, New York, New York. New York,
Association for Computing Machinery. pp. 183–190.
Available from: doi: 10.1145/1342250.1342279

Toledo, R., Lévy, B. & Levy, B. (2008) Visualization of
Industrial Structures with Implicit GPU Primitives.
In: 4th International Symposium on Visual Com-
puting, ISVC08, 1-3 December 2008, Las Vegas,
Nevada. Berlin, Springer-Verlag. pp. 139-150. Avail-
able from: doi: 10.1007/978-3-540-89639-5_14

Toledo, R., Wang, B. & Lévy, B. (2008) Geometry
Textures and Applications. Computer Graph-
ics Forum. 27 (8), 2053–2065. Available from:
doi: 10.1111/J.1467-8659.2008.01185.X

Wang, L., Wang, X., Tong, X., Lin, S., Hu, S., Guo, B. &
Shum, H. Y. (2003) View-dependent displacement
mapping. ACM Transactions on Graphics. 22 (3).
Available from: doi: 10.1145/1201775.882272

Wang, X., Tong, X., Lin, S., Hu, S., Guo, B. & Shum,
H. Y. (2004) Generalized Displacement Maps. In:
Proceedings of the 15th Eurographics Workshop
on Rendering Techniques, 21-23 June, Norköping,
Sweden. The Eurographics Association. pp. 227-233.
Available from: doi: 10.2312/EGWR/EGSR04/227-233

Welsh, T. (2004) Parallax mapping with offset limit-
ing: A per-pixel approximation of uneven surfaces.
Available from: http://page.mi.fu-berlin.de/block/
htw-lehre/wise2015_2016/bel_und_rend/skripte/
welsh2004.pdf [Accessed 20th October 2021]

Yerex, K. & Jagersand, M. (2004) Displacement
Mapping with Ray-casting in Hardware. In: ACM
Siggraph 2004 Sketches, SIGGRAPH '04, 8-12
August 2004, Los Angeles, California. New York,
Association for Computing Machinery. p. 2000.
Available from: doi: 10.1145/1186223.1186410

© 2021 Authors. Published by the University of Novi Sad, Faculty of Technical Sciences, Department of Graphic Engi-
neering and Design. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution license 3.0 Serbia (http://creativecommons.org/licenses/by/3.0/rs/).

https://link.springer.com/chapter/10.1007/978-3-7091-6303-0_25
https://www.sciencedirect.com/science/article/abs/pii/S0097849301000644?via%3Dihub
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01108.x
https://dl.acm.org/doi/10.1145/1111411.1111423
https://dl.acm.org/doi/10.1145/1342250.1342279
https://dl.acm.org/doi/10.1007/978-3-540-89639-5_14
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2008.01185.x
https://dl.acm.org/doi/10.1145/882262.882272
https://diglib.eg.org/handle/10.2312/EGWR.EGSR04.227-233
http://page.mi.fu-berlin.de/block/htw-lehre/wise2015_2016/bel_und_rend/skripte/welsh2004.pdf
http://page.mi.fu-berlin.de/block/htw-lehre/wise2015_2016/bel_und_rend/skripte/welsh2004.pdf
http://page.mi.fu-berlin.de/block/htw-lehre/wise2015_2016/bel_und_rend/skripte/welsh2004.pdf
https://dl.acm.org/doi/10.1145/1186223.1186410

