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Introduction

Real-time rendering using traditional methods is still 
hampered by a large amount of graphics primitives 
(polygons and vertices) that the graphics card must 
calculate. This has an impact on the interaction of 3D 
scenes, particularly those with complex 3D objects. 
Image-based rendering techniques (IBMR) gained 
traction as an alternative to traditional polygon-based 
rendering approaches because they can show 3D sur-
faces in real-time at a low-performance cost while 

avoiding mesh densification. These approaches use 
textures to store a collection of geometry-related data 
that will be retrieved during the ray-tracing algorithm 
stage, hence bypassing the computation of geometry.

Our research focuses on revolution-bump mapping, a 
technique that falls under the category of image-based 
modeling and rendering approaches (Halli et al., 2010; 
Ragragui et al., 2018). Because it uses a simple shape box 
and two textures. The first texture is used to produce the 
revolution surface, while the second is utilized to provide 
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ABSTRACT

Creating 3D computer-generated surfaces has long been a difficult 
challenge in computer graphics, particularly when portraying massive 
landscapes with extremely detailed surfaces in real-time. Despite significant 
advances in computer vision in recent years, there is still a great demand 
for improved realism and the capacity to edit computer-generated 3D 
surfaces in real-time. We propose three scalable and faster algorithms 
for creating extended, beveled, and chamfered patterns using only two 
textures and a simple shape box. The proposed techniques produce 
visually pleasing results in real-time while retaining optimal rendering 
performance and without increasing the mesh density of the shape box.
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the microrelief effect. We were able to greatly refine this 
approach such that it could generate extended, beveled, 
and chamfered revolution objects while preserving the 
features on their surfaces. Our approaches take advan-
tage of the fact that the surface revolution is modified 
without the need to recalculate the texture (shape 
map). On the other hand, we can control in real-time 
the effect of extension, bevel, and chamfer parameters.

Related Work

Texture mapping is a method of adding realism to a 
computer-generated 3D shape introduced in (Catmull, 
1974; Heckbert, 1986). This technique is the simplest 
and oldest of image-based techniques. It aims to find 
the relation between the texture elements defined in 
the two-dimensional texture space and the surface 
defined in a three-dimensional space. In effect, it is a 
process that takes a surface and changes its appear-
ance at each location using an image, function, or other 
data set. It should be noted that this technique was 
extended by Blinn and Newell (Blinn & Newell, 1976).

In 1978, Blinn introduced, in the article (Blinn, 1978), 
a method to achieve what is called bump mapping. 
The latter simulates the wrinkles of a surface without 
the need to modify the geometry of the 3D model. 
The normal of a given surface is perturbed according 
to the partial derivatives of the applied texture, called 
the height map. This texture is a simple grayscale 
image, which can be seen as an elevation map. The 
perturbed normal is then used instead of the original 
normal when shading the surface according to the 
Blinn-Phong model (Blinn, 1977). This method chang-
es the appearance of wrinkles and micro-reliefs seen 
on the surface of 3D models. An improvement of the 
bump mapping is the normal mapping (Peercy, Airey 
& Cabral, 1997). Its principle is to use a texture to save 
not the variation, but the coordinates of the normal for 
each fragment and then use them in the shading mod-
el. The principle is to perform the calculations directly 
in the tangent space. This space is defined for each 
face of the mesh and keeps the normal unchanged. 

Displacement mapping is the first method to use the 
height map to add detail to a surface (Cook, 1984; Lee, 
Moreton & Hoppe, 2000). It masked almost all of the 
defects in the bump mapping and the normal map-
ping, as the surface geometry is completely changed 
instead of just disturbing the normal. This approach is 
based on the subdivision and the displacement of the 
sub-polygons of the surface along the normal to the 
vertices based on the distances obtained from the dis-
placement map. The result is a more realistic rendering 
where the displaced geometry is also visible in the sil-
houette. The subdivision of a base surface considerably 
increases the number of graphic primitives (vertices and 

polygons) that the graphic map must manage, and this 
influences the execution time in the rendering stage. 
From there, research is focused on alternative rendering 
methods based on mesh simplification and ray tracing 
algorithms. The techniques presented in (Gumhold & 
Hüttner, 1999; Doggett & Hirche, 2000) took a different 
approach, their methods truly modified the geometry 
in such a way as to minimize the number of triangles 
rendered as a function of viewpoint. They proposed 
to use an adaptive subdivision for the displacement 
map to limit the number of polygons generated.

Per-pixel displacement mapping is an interesting 
improvement of the per-vertex displacement mapping 
technique introduced in (Patterson, Hoggar & Logie, 
1991), the strong point of this approach is that it increas-
es the realism of the surface without densifying the 
mesh. This method aims at solving the bottleneck caused 
by the very large number of graphics primitives sent by 
the vertex displacement mapping to the graphics proces-
sor (polygons, 3D points, normals, texture coordinates...).

Parallax mapping not only disrupts the normals but also 
changes the texture coordinates used, without chang-
ing the geometry of the object (Kaneko et al., 2001). 
Its principle is quite simple, it aims to shift the texture 
coordinates to perform an approximate search for the 
point of intersection between the view radius, expressed 
in tangent space, and the relief stored in the height map. 
To overcome the problems of simple parallax mapping, 
Welsh introduced parallax mapping with offset limitation 
(Welsh, 2004). A better improvement of the parallax 
mapping is called the Steep Parallax Mapping. It consists 
in assuming that the surface is always flat, but its normal 
vector can be arbitrary (McGuire & McGuire, 2005).

Binary search is a method specifically designed to con-
verge quickly to the point of intersection to ensure 
fast rendering. This technique assumes that the actual 
intersection point is either at the top or bottom of 
the relief depth value retrieved from the displace-
ment map (Policarpo, Oliveira & Comba, 2005).

Ray tracing uses the viewing ray to determine the point 
of intersection. It is also called linear search. It has been 
used alone in parallax mapping (McGuire & McGuire, 
2005), as well as in (Policarpo, Oliveira & Comba, 2005) 
and  (Tatarchuk & Natalya, 2006)  as a first step.

Relief mapping is among the popular methods of real-
time rendering since it quickly converges to the point 
of intersection that lies between the view ray and the 
relief (Policarpo, Oliveira & Comba, 2005; Policarpo & 
Oliveira, 2006). This is an extension of another tech-
nique called relief texture mapping (Oliveira, Bishop 
& McAllister, 2000). While this method will function 
and render satisfactorily in most cases, it may fail in 
some special situations. This problem will be solved 
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in (Oliveira & Policarpo, 2005), whose principle is to 
reinforce each vertex of the polygonal model with two 
coefficients representing a quadric surface that is locally 
close to the geometry of the object (Jean, 2002). This 
quadratic surface is used to produce correct renderings 
of objects and their silhouettes. Another improvement 
of relief mapping is proposed in (Ouazzani Chahdi et 
al., 2018) which is called dynamic relief mapping. 

Sphere tracing uses spheres to converge most quick-
ly to the intersection point. It was first introduced in 
(Hart, 1996) and then it was used for height map search 
using ray tracing (Donnelly, 2005). It is based on two 
main elements, namely the distance map and an iter-
ative algorithm, whose goal is to find the first point of 
intersection between the view radius and the relief. 
Further improvements are presented in (Fabbri et al., 
2008; Gustavson & Strand, 2011), whose objective is to 
improve the algorithm for computing the distance map.

Cone tracing is a technique that calculates the empty 
space, during the pre-processing phase, around each 
pixel of the depth map as an open cone at the top and 
then stores its ratio in a texture called a cone map. 
Subsequently, the cone map is used when searching 
for the intersection to converge more quickly on the 
intersection point without the risk of avoiding it. They 
exist in two versions, the first is a conservative tech-
nique (Dummer, 2006) and the second is a relaxed 
technique (Policarpo & Oliveira, 2007) coupled with a 
binary search. These two versions have been improved 
in (Halli et al., 2008). These improvements consist in 
using O(n) linear algorithms instead of O(n²) quadratic 
algorithms to compute the conservative cone and the 
relaxed cone. Then calculate and store the radius of 
the cones instead of their ratio to have cone angles 
on the order of π/2 rather than π/4. Finally extend the 
technique to support non-square textures by using 
elliptical cone rectification during the rendering step.

Halli et al. introduced a new image-based approach for 
rendering revolved surfaces (Halli et al., 2009; Halli et 
al., 2010). Indeed, revolution mapping and extrusion 
mapping are based on a single RGBA texture that stores 
all the related data to the geometry. Then, the resulting 
texture is mapped on a shell box using 3D texture coor-
dinates. This technique allows rendering full models and 
limits considerably the number of graphic primitives 
constituting the complex scenes. Further improvements 
of these techniques are presented in (Ragragui et al., 
2018; Ragragui et al., 2020; Ouazzani Chahdi et al., 2021).

Revolution-bump mapping

The revolution-bump mapping uses a 2D binary form 
stored in the shape map, where only the zero-valued 
pixels constitute the base shape of the pattern that will 

be revolved during the rendering stage. This technique 
is based on ray tracing, and uses the Euclidean Dis-
tance Transform (EDT) computed from the base shape 
to skip the empty space and speed up the search for 
the intersection point between the viewing ray and 
the generated surface (Danielsson, 1980; Fabbri et al., 
2008; Gustavson & Strand, 2011). It also relies on bump 
mapping to add realism to 3D objects by adding the 
illusion of microreliefs. The revolution-bump mapping 
makes it possible to considerably limit the number of 
graphic primitives constituting the complex scenes.

Revolution mapping

Per-pixel revolution mapping is an image-based modeling 
and rendering technique. It consists of generating very 
convincing surfaces of revolution without polygonization 
effect which are displayed interactively. The principle 
is to generate virtual surfaces using only a shape map 
that contains the geometry data of the basic form (Fig-
ure 1). This geometry represents the revolution of the 
basic form plated on the shape box using the texture 
coordinates (Figure 2). These coordinates are calculated 
using cylindrical or spherical projection. The revolution 
mapping is based on three main elements: the shape 
map, the ray tracing algorithm, and the shape box.

 » Figure 1: The shape map that will be sent to the  
graphic card

Shape map is an RGBA texture that contains the 
data needed for the revolution mapping algorithms 
(Figure 1). The alpha channel is used to store the 
basic form represented by a binary image. The blue 
channel is used to store the distance map. Finally, 
the red and green channels contain respectively the 
x and y components of the gradient which will be 
used to determine the coordinates of the normal.

Ray tracing algorithm consists of searching for the inter-
section of the viewing ray with the revolved surface by 
using the distances stored in the shape map (see Figure 
2). Let (u,v) be the coordinates of the current pixel and 
p0  be the starting point of the search with the coordi-



nates (x0 , y0 , z0) = (u, v, 0), and let V be the normalized 
view direction determined by going from the viewpoint 
to the starting point p0 , all of which is expressed in 
the texture space associated with the current pixel. 

 » Figure 2: Ray tracing process associated with revo-
lution mapping. At each iteration, a circle tracing is 
performed to converge quickly and without the risk of 
skipping the first intersection.

At each iteration, the minimum distance di between 
the point pi  and the revolved object is extracted from 
the blue channel of the shape map and a circle trac-
ing is performed to advance to the intersection point 
without the risk of skipping the first intersection. 
The next point pi+1 is determined by the formula:

           (1)

To retrieve the distance di between the current position 
and the base shape that is stored in the alpha channel of 
the shape map, the revolution algorithm uses the coor-
dinates (si ,ti ) (Figure 3). Using the following formula:

         (2)

With :

       

From Figure 3, the normal is obtained from the com-
ponents (Gintx , Ginty) of the gradient unit stored in 
the red and green channels of the shape map:

  
(3)

The shape box will be created from the shape map, as 
shown in Figure 4.a. W and H are the dimensions of the 
shape map. As well as S is a real-time editable vector, 
representing the scale of the shape box in the scene 
frame. The values in blue are the texture coordinates.  

From figure 4.b we notice that the model is displayed in 
its entirety with a correct rendering of the silhouette.

 » Figure 3: The calculation of the normal and tangent at 
the intersection point.

 » Figure 4: Creating the shape box. (a) Shape box that 
corresponds to the revolved object where the shape 
is placed vertically on the surface. (b) Rendering of a 
revolved object using the shape box.

2. Calculation of the 
perturbed normal

The problem of revolution mapping is that the revolved 
object is created without any microrelief effect, so 
it does not take into account their realism. From 
this observation, the solution is to combine bump 
mapping with revolution mapping, which is called 
revolution-bump mapping (Ragragui et al., 2018).

Revolved surfaces are created without any polygonal 
meshes and do not possess any parametric equation. 
Therefore, we must compute the tangent space asso-
ciated with each intersection point. Therefore, the 
perturbed normal N'(u,v) is calculated from the sum 
of the normal vector N(u,v) and the displacement 
vector D(u,v) according to the following equation:
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(4)

With:

 (5)

The parameter a is a factor that can be controlled in 
real-time and is used to control the depth scale of the 
microrelief. The partial derivatives ∂H(u,v) are computed 
along u and v of the height map H(u,v) in the preprocess-
ing stage. Then they are saved in the red and green chan-
nels of a texture that we call the depth map (Figure 5). 

 » Figure 5: The calculation of the partial derivatives  
of the height map. (a) The height map.  
(b) The depth map.

This map will be sent to the graphic card during 
the rendering stage. Finally, the tangent can 
be deduced graphically using Figure 3:

  (6)

While the vector Bint is obtained by the vector product 
of the two vectors Nint and Tint, using the formula:

           (7)

The extensions of revolution-
bump mapping

Extended revolution-bump mapping

Since the level lines of the distance map are extended 
forms of the base form, we can use them to create a sur-
face of outside revolution. To do this, we simply replace 
the distance in the revolution-bump algorithm with the 
distance to the extended shape. Formula (1) becomes:

      (8)

Where e is a parameter that can be modified in 
real-time, allow modulating the extension effect.

Even though the extended revolution-bump mapping 
is slightly slower than the revolution-bump mapping, 
it can be very useful for smoothing shapes as shown in 
Figure 6. It should be noted that for the extended rev-
olution-bump mapping, the normal vector Nint and the 
tangent vector Tint remain the same as for the revolu-
tion-bump mapping, since the level lines of the distance 
map are extended forms of the base form (Figure 7).

2. Beveled revolution-bump mapping

The bevel consists of creating an outwardly extend-
ed revolution that varies as a function of depth. We 
start by searching for the intersection based on the 
distance to the original form by using formula (8) 
(because we are combining the bevel with the extend-
ed revolution-bump mapping). During this search, it 

 » Figure 6: Rendering of an object using the extended revolution-bump mapping. These images are taken in real-time 
by changing only the value of the parameter e.



is necessary to check if the current position is inside 
the geometry by using the following difference:

      (9)

Where b is a parameter to control the effect of the bevel 
and ∆di denotes the width of the bevel at zi. The  
intersection point is determined according to the  
following system:

      (10)

 » Figure 7: Illustration of an example of the distance map 
that is stored in the blue channel of the shape map.

If ∆di is positive, we calculate the next position pi+1 using 
equation (10), because the point pi in the current step 
is always outside the geometry. If ∆di is negative, we 
get the point which is inside the beveled surface like 
the point p3 in Figure 8. Then we proceed to the binary 
refinement by successively dividing the last distance 
max (0,di-1 - e) by 2 to converge to the intersection point 
pint of the geometry with the viewing ray V (Figure 8).

In contrast to the extended revolution-bump mapping, 
the z coordinates of the normal and y coordinates of the 
tangent must be changed. However, they remain uniform 
and are obtained by rotation of the gradient (Figure 9). 
The coordinates of the normal in this case become:

       (11)

And the coordinates of the tangent are :

       (12)

 » Figure 8: The intersection of the viewing ray with the 
beveled surface.

 » Figure 9: Diagram for the calculation of the normal 
vector and the tangent vector in the case of the  
beveled surface.

These two vectors, normal and tangent, must then 
be normalized before the perturbation of the nor-
mal N'int by using formulas (4) and (5). As illustrat-
ed in the Figure 10, this enhancement enables for 
real-time modification of the revolution surface.

Chamfered revolution-bump mapping

The revolution-bump mapping with chamfer con-
sists of limiting the effect of the bevel to a certain 
depth value to have edges with chamfer (Figure 
11). To do this, simply replace formula (9), which 
defines the test above/below the beveled revolu-
tion-bump mapping, by the following formula:

         (13)

With c is a parameter that allows modulating the 
chamfer effect. The modification of the z-coordi-
nate of the normal must also be limited to the depth 
c. Note that the search for the intersection point is 
done according to the formula (10). For the revolu-
tion-bump mapping with chamfer, the normal and 
tangent will be equivalent to formulas (11) and (12) 
respectively if its depth is greater than the value of c in 
formula (13). Otherwise, these vectors are equivalent 
to one of the extended revolution-bump mapping.
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Results and Discussion

To measure the rendering speed of the different tech-
niques discussed in this paper, we have implemented 
the preprocessing stage of the algorithm that will com-
pute the shape map and the displacement map in C++. 
After that, at the rendering stage, we have exploited 
the two programmable units of the graphics card (GPU), 
namely the Vertex Shaders and the Fragment Shaders 
using OpenGL associated with its parallel processing 
programming language GLSL. The measurements and 
figures presented in this section were performed using 
an Intel Core i7-3612QM 2.10GHz CPU architecture with 
8GB of RAM and a GeForce GT 630M graphics card with 
1024Mb of memory. Note that before starting the ren-
dering, we send to the graphics card the shape map and 

the displacement map created during the preprocessing 
stage as well as the coordinates of the shape box.

The images of the figures used to compare performance 
are rendered with textures resolution equal to or great-
er than 512×512, and with the microrelief depth scale 
parameter a=1. In addition, these images are screenshots 
taken during the test, and that the shape box occupies 
most of the screen. Note that the total number of iter-
ations for the intersection search is 20. For the last two 
techniques, namely the beveled revolution-bump map-
ping and chamfered revolution-bump mapping, we set 
the total number of iterations to 10 for the binary search.

Figures 6, 10, and 11 show the techniques discussed in 
this paper. We notice that the images rendered by the 

 » Figure 10: Rendering of an object using the beveled revolution-bump mapping. These images are taken in real-time 
by changing the value of the b parameter.

 » Figure 11: Rendering of an object using chamfered revolution-bump mapping. The images are taken in real-time by 
setting the value of b to 0.9 and changing the value of the parameter c.
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approaches proposed in this paper present realistic 
surfaces of revolution and that we can change them in 
real-time. Note also that the models created by these 
techniques present microrelief on their surfaces. Figure 
12 shows a comparison between some models created 
by the different techniques discussed in this paper. These 
objects are obtained from a low-density mesh (shape 
box), on which a shape map and a displacement map 

have been plated.  We can notice the variety of objects 
that can be created by these techniques and the change 
of the surface in real-time that we can control as well as 
the important number of graphical primitives (vertices 
and polygons) that can be avoided. The approaches 
discussed in this paper allow rendering revolved objects 
with a microrelief effect and without mesh densification.

 » Figure 12: Some objects were created using the techniques discussed in this paper. (a) Revolution-bump mapping. (b) 
Extended revolution-bump mapping. (c) Beveled revolution-bump mapping. (d) Chamfered revolution-bump mapping.
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Figure 13 shows that the approaches presented in this 
paper can be also applied for the technique of revolution 
with repetition.

Table 1 shows a comparison of the rendering speed of 
the extended revolution-bump mapping with different 
values of the parameter e that extends the revolution 
surface, as well as the view on which the speed cal-
culation is performed. We notice that the rendering 
speed of our approach decreases. This slowdown is 
due to the treatment concerning the enlargement 
of the generated surface, which is quite normal.

Table 1 
Comparison of rendering speed in frames per second using the 
extended revolution-bump technique with different values of 
parameter e.

Model Screen 
shot e = 0,25 e = 0,5 e = 0,8

800 x 600 180 170 160

1366x706 150 145 130

Concerning the beveled revolution-bump map-
ping, Table 2 shows that the speed increases even 
if we increase the depth scale parameter b. This 
is because every time the value of b increases, 
the search interval of the intersection decreas-
es, hence the number of iterations decreases.

Table 2 
Comparison of the rendering speed in frames per second of the 
beveled revolution-bump mapping using different values of the 
parameter b.

Model Screen 
shot b = 0,25 b = 0,5 b = 0,8

800 x 600 200 210 230

1366x706 190 195 200

Table 3 shows a comparison of the rendering 
speed of the chamfered revolution-bump map-
ping by setting the value of b = 0.8 and by varying 
the values of the parameter c. It can be seen that 
the speed increases when we increase the val-
ue of the parameter c. This increase is because we 
reduced the search interval of the intersection.

 » Figure 13: Models rendered using extended, beveled and chamfered revolution-bump mapping with repetition.



Table 3 
Comparison of rendering speed in frames per second using 
different values of c and setting the value  b = 0.8 using the 
chamfered revolution-bump technique.

Model Screen 
shot c = 0,25 c = 0,5 c = 0,7

800 x 600 195 209 216

1366x706 174 176 182

Conclusion

In this paper, we presented three new algorithms of 
the revolution-bump mapping technique that allow the 
creation of extended, beveled, and chamfered objects.

The proposed algorithms allow real-time control while 
maintaining the interactivity and visual richness of the 
created objects. The proposed algorithms allow real-time 
control while maintaining the interactivity and visual 
richness of the created objects. In addition, they avoid 
saturating the graphics pipeline, which can be caused by 
processing a very large number of vertices and polygons.

Extended, beveled, and chamfered revolution-bump 
mapping represent an interesting solution capable of 
providing control of the revolution surface and appre-
ciable rendering quality. These techniques derive 
their advantages from the fact that they bypass the 
mesh densification because they use only a simple 
box, the tangent space associated with each inter-
section point, and two textures. The first texture is 
used to generate the surface of revolution while the 
second one is used to add the microrelief effect. The 
proposed improvements respect two objectives, 
namely the required rendering speed and the display 
of the revolution models in a very convincing way.
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