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Introduction

Based on traditional methods, real-time rendering still 
suffers from the number of vertices and polygons that 
the graphics cards need to handle, which affects the 
interactivity of rendering complex 3D scenes.  

Furthermore, the appearance of the microreliefs con-
stituted a problem in real-time rendering due to their 
diminutive size to be created by a mesh that requires a 
series of decomposition into a set of triangles, moreover, 
they represent a lot of details which make them difficult 
to simulate for shading functions and this because of 

Anouar Ragragui 1  
Adnane Ouazzani Chahdi 2 
Amina Arbah 2  
Hicham El Moubtahij 3  
Akram Halli 4  
Khalid Satori 2  

¹ Abdelmalek Essaadi University,  
National School of Applied Sciences  
Al Hoceima (ENSAH), SOVIA  
Research Team, Tetouan, Morocco
² Sidi Mohamed Ben Abdellah  
University, Faculty of Science Dhar El 
Mahraz, LISAC Laboratory, Fez, Morocco
3 Ibn Zohr University, High School of 
Technology, Agadir, Morocco
4 Moulay Ismail University, Faculty of  
Law, Economics, and Social Sciences 
(FSJES), OMEGA-LERES Laboratory, 
Meknes, Morocco

Corresponding author: 
Anouar Ragragui
e-mail:  
a.ragragui@uae.ac.ma

First received: 21.11.2023.
Revised: 23.4.2024.
Accepted: 21.6.2024.

ABSTRACT

 
Nowadays, 3D computer graphics are firmly anchored in our daily lives, 
extending across a multitude of distinct fields. Although each field follows its 
specific objectives, two major objectives are taken into consideration: realism 
and rendering speed. This is why image-based rendering (IBMR) techniques, 
such as revolution mapping, are gaining interest. Revolution-bump mapping 
is an image-based rendering that allows the creation of 3D objects in 
their entirety and without using polygonal meshes. The objective of the 
study presented in this paper is to improve the revolution-bump mapping 
technique as well as its extensions while ensuring that the application of 
textures on revolved surfaces is realized adequately. This development 
will allow the creation of pre-existing revolve models, while maintaining 
the essential rendering speed requirements for real-time rendering.
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visual poverty. So, it is often necessary to make sacrifices 
by decreasing the number of polygons constituting the 
3D scene so that it can maintain a reasonable display 
rate and consequently reduce the rendering quality.  
 
The reason that pushed us to move towards alternative 
methods to polygonal mesh, namely image-based ren-
dering and more precisely revolution mapping because 
it uses only a single RGBA texture to create 3D objects.

Revolution-bump mapping is a technique that combines 
two different approaches: revolution mapping and bump 
mapping (Ragragui et al., 2018). Revolution mapping is 
based on the use of a binary form stored in a 2D tex-
ture, which we call a shape map. During the rendering 
stage, the model to be revolved is represented by only 
the pixels with zero values. This method is based on 
the ray tracing algorithm to find the intersection point 
of the viewing ray and the revolved surface by using an 
empty space which is calculated using the Euclidean 
Distance Transform (EDT) computed from the binary 
form (Danielsson, 1980; Fabbri et al., 2008; Gustavson 
& Strand, 2011). On the other hand, bump mapping 
consists of adding more realism to 3D objects by sim-
ulating micro-reliefs during the shading phase. It uses 
a displacement map to disrupt the normals associated 
with the 3D surface to produce a microrelief effect.

Unfortunately, revolution mapping faces a recurring 
problem of poor texturing of revolved surfaces. Indeed, 
it has gaps in the ability to adequately apply textures 
to these surfaces due to the use of inappropriate 
texturing functions. This article aims to present an 
innovative solution that relies on the configuration of 
the revolution object to select the appropriate textur-
ing function. Indeed, the two types of textures used 
for the revolved object, namely the color texture and 
the displacement map, prove insufficient to ensure 
optimal texturing of the surface of the 3D object, 
whether in terms of colorimetry or microreliefs.

As can be seen in Figure 1, the direct application of 
the texturing function presents problems in adapt-
ing texture to the shape of 3D objects. Looking at 
the object at the top of Figure 1a, it can be seen that 
spherical projection does not guarantee appropriate 
texturing, whereas the object at the bottom is ade-
quately textured. On the other hand, in Figure 1b, the 
cylindrical projection guarantees perfect texturing 
of the object at the top, but the object at the bot-
tom does not benefit from satisfactory texturing.

In this study, we propose an approach that uses the 
specific geometry of the revolved object to guide the 
choice of texturing method. This approach aims to 
solve the problems inherent in texturing the surfaces 
of a revolution, considering the coloring and rendering 
requirements of microreliefs.  

By determining the texturing method based on the 
shape and characteristics of the revolved object, we 
aim to overcome the limitations of revolution bump 
mapping and enable the creation of 3D renderings 
that respect both visual realism and detail accuracy.

Related Work

One of the most popular techniques for real-time ren-
dering is texture mapping. It allows to add realism to a 
computer-generated 3D object (Catmull, 1974; Heckbert, 
1986; Blinn & Newell, 1976). Another use of texture map-
ping is presented by the authors Lim et al. (2023) and 
Kao, Chen & Ueng (2023). It is the oldest and simplest 
of the image-based techniques. Its goal is to determine 
the relationship between texture elements defined in 2D 
space and surfaces defined in 3D space. Bump mapping 
was introduced by Blinn (1978). This method reproduces 
microrelief on 3D surfaces without changing their  
geometry. A displacement value is calculated based 
on the partial derivatives of the applied texture, which 
is used to perturb the normal of a given surface.

Parallax mapping (Kaneko et al., 2001) is a technique 
similar to bump mapping, but based on different prin-
ciples. It allows to significantly increase the detail of 
a textured surface, even if this detail is an illusion. 
It aims at displacing the texture coordinates to find 
approximately the intersection at which the height 
map's relief and the viewing ray, given in tangent space, 
cross. Further improvements are presented by the 
authors Welsh (2004) and McGuire & McGuire (2005).

To add detail, the height map's values are used in the 
displacement mapping (Cook, 1984; Lee, Moreton & 
Hoppe, 2000). It was able to hide almost all the defects 
of bump mapping by completely changing the sur-
face geometry instead of just perturbing the normals. 
This approach is based on dividing the 3D surface into 
sub-polygons and displacing them along their normals 
using distances extracted from a displacement map. 
The method used is different from that described in the 
papers by Gumhold & Hüttner (1999) and Doggett &  
Hirche (2000), which significantly modified the geom-
etry to reduce the number of triangles produced 
as a function of viewpoint. To reduce the polygon 
generation, they proposed the adoption of an adap-
tive subdivision based on the displacement map.

View-dependent displacement mapping is a technique 
suitable for real-time rendering. It relies on preprocess-
ing to compute a texture (Wang et al., 2003). The goal 
is to move the surface by performing calculations at the 
texel level, thus optimizing performance. A significant 
improvement of this method is presented in Wang & 
Dana (2005), where the use of a compression method is 
introduced to meet high memory requirements.  
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Another interesting extension is discussed in Wang et  
al. (2004), which aims to generalize the displacement  
map approach under the name "GDM" (Generalized  
Displacement Maps).

 » Figure 1: Illustration of texturing function problem of 
revolved objects. (a) The spherical projection (b) The 
cylindrical projection

The ray tracing method aims to use the viewing ray 
to find the intersection point, sometimes referred to 
as linear search. It has only been used in the context 
of parallax mapping in the research by McGuire & 
McGuire (2005), and as a first step in the the papers 
of the authors Policarpo, Oliveira & Comba (2005) and 
Tatarchuk & Natalya (2006). Unfortunately, relying solely 
on linear search results in stair-step artifacts, unless very 
narrow intervals are used. This issue was resolved by 
the method suggested in Tatarchuk & Natalya (2006), 
which involved combining a secant step with a fine 
linear search (Wen, 2023; Yang & Jia, 2023; Wu et al., 
2024; Zellmann et al., 2022). Unlike ray tracing, which 
follows light rays deterministically, path tracing uses 
a probabilistic approach to calculate light paths in the 
scene; This is a technique that uses the principle of ray 
tracing but in a different way (Chen, Chen & Yu, 2023; 
Wald & Parker, 2022; Wald, Jaroš & Zellmann, 2023).

The combination of secant and linear searches offers 
a solution for improving ray tracing (Yerex & Jager-
sand, 2004). A further improvement to this technique 
is introduced in Risser, Shah & Pattanaik (2006), 
where the secant method is repeated several times 
to accurately determine the intersection point.

The key advantage of per-pixel displacement mapping 
is its ability to enhance the reality of surfaces without 
adding complexity to the mesh structure, making it an 
exciting evolution of the per-vertex displacement map-
ping method previously described in Patterson, Hoggar 
& Logie (1991). This technique overcomes the bottleneck 
caused by the significant number of graphics primitives 
sent to the graphics processor as part of vertex displace-
ment mapping.  

Per-pixel displacement mapping relies on ray-tracing  
technology to accurately determine the texture coo- 
rdinates for each pixel with respect to the displace- 
ment map. 

Surfaces of revolution are commonly used in various 
sectors such as engineering, architecture and 3D mod-
elling, as they can be used to generate refined and com-
plex shapes (Li & Li, 2022). Several techniques are based 
on this approach, including extrusion mapping and  
revolution mapping, as discussed in Halli et al. (2009) 
and Halli et al. (2010).  
 
Both methods use shape maps to create 3D surfaces. To 
increase the realism of the generated surfaces, various 
improvements have been made to both approaches, as 
shown in Ragragui et al. (2020), Ragragui et al. (2018), 
Ragragui et al. (2022) and Chahdi et al. (2021b).

To quickly converge to the intersection point, sphere  
tracing uses spheres to encode the empty space 
(Hart, 1996). It was subsequently adapted for the 
intersection point by using ray-tracing and the 
height map (Donnelly, 2005). Further improve-
ments were presented in Fabbri et al. (2008) and 
Gustavson & Strand (2011), which aim at perfect-
ing the algorithm for calculating distance maps.

Cone tracing determines the empty space around each 
pixel of the depth map in the pre-processing stage as an 
open cone at the top, and then stores its ratio in a cone 
map. During the rendering stage, the cone map is used 
to accelerate the convergence to the intersection point  
of the viewing ray and the surface, so that there is no  
chance of missing it. This approach comes in two flavors:  
a relaxed version (Policarpo & Oliveira, 2007) and a  
conservative version (Dummer, 2006). Both variants of  
cone mapping have been extended in Halli et al. (2008)  
and Chahdi et al. (2021a).

Due to its ability to speed up convergence to the 
point where the viewing ray intersects with the 
relief, relief mapping is one of the most popular 
methods for real-time rendering (Policarpo, Olivei-
ra & Comba, 2005; Policarpo & Oliveira, 2006; 
Chahdi et al., 2018). This technique is an evolu-
tion of the relief texture mapping method intro-
duced in Oliveira, Bishop & McAllister (2000).

Shadow mapping is a widely used technique that  
provides satisfactory results and is characterized  
by the fact that is relatively easy to implement,  
as suggested in Wang et al. (2003), Policarpo,  
Oliveira & Comba (2005) and Wang et al. (2017).  
 
The idea behind shadow mapping is quite simple: it is 
based on the principle that the scene is illuminated  
according to the viewpoint of the light source.

(a) (b)
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A technique for interactive deformation and collision  
with reliefs was presented in Nykl, Mourning & 
Chelberg (2014). This technique can be seamlessly 
combined with existing relief rendering techniques, 
including parallax mapping, relief mapping, as well 
as applications using displacement mapping.

Bump mapping

Rendering microrelief was one of the main issues, partic-
ularly in real-time rendering. Blinn proposed bump map-
ping as a microrelief simulation technique (Blinn, 1978). 
As shown in Figure 2, this method involves adjusting  
the 3D surface's normals to create the appearance of 
microrelief. The principle is quite simple: it consists of 
displacing the normals to a surface to induce variations 
in shading, thus giving the illusion of relief without mod-
ifying the basic geometry of the 3D object. More con-
cretely, it is based on the partial derivatives computed 
from a microrelief saved as a monochrome image known 
as a height map, which entails displacing the normal 
interpolated during the rasterization stage. Disturbed 
normals are calculated using the following formula:

By using the height map H(u, v) saved as a 2D grayscale  
image, we can calculate the disturbed normal 
N'(u,v)  for each pixel by using the formula (1).

 » Figure 2: Comparison of a teapot rendered using  
texture mapping (top) and bump mapping (bottom)

Revolution-bump mapping

Revolution mapping is a method for generating highly 
convincing 3D objects without resorting to polygonal 
meshes and presenting them interactively. The underlying 
concept is to use a shape map, which holds the geomet-
ric information of the basic form, to build virtual surfaces.  

Figure 3 illustrates a geometric representation of the  
base form's revolution, positioned on a box (shape box),  
and highlights the process of searching the interse- 
ction point.

There are four essential components in the revolution 
mapping algorithm. Firstly, the shape map and dis-
placement map are essential for precisely defining the 
geometry and displacement variations (microreliefs) 
associated with the basic form. Secondly, the ray-tracing 
algorithm plays a crucial role in visual creation by calcu-
lating the interactions between the viewing ray and the 
revolution surface. The last other components are the 
shading process that adds lighting and shadow effects, 
contributing to the realism of the final 3D object, and 
the shape box that provides a reference element for 
positioning the basic form and managing intersections.

Shape and displacement map

These two maps are obtained during the pre-processing  
phase. They contain the essential information for gener-
ating the surface of revolution (shape map) and for  
adding realism (displacement map).

Shape map: The data for the revolution mapping algo-
rithm is contained in this map, which is an RGBA texture 
(Figure 4e). The alpha channel saves a binary image that 
represents the basic form (Figure 4a). The distance map 
is kept in the blue channel (Figure 4b).  
 
Finally, the red and green channels contain the 
gradient values along x and y, which are used to 
calculate the normal coordinates (Figure 4c,d).

 » Figure 3: The shape of a piece of jewelry placed at the 
center of a box and the process of finding the point of 
intersection pint

Displacement map: the partial derivatives ∂H(u,v) 
are calculated as a function of u and v from the 
height map H(u,v) (Figure 5a), then saved in the red 
and green channels (Figure 5b and c) of a 2D tex-
ture called the displacement map (Figure 5d).

(1)

˿
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Before starting the rendering phase, the two maps; the  
shape and the displacement map; are transferred to the  
graphics card.

 » Figure 4: Example of different data. (a) The alpha 
channel. (b) The blue channel. (c) Red and (d) green 
channels. (e) Shape map stores all this data

 » Figure 5: Example of displacement map ∂H(u,v) for 
which we store the partial derivatives of H(u,v)

Ray tracing

Finding the intersection point is the first step in the 
revolution mapping algorithm. For this, the technique is 

based on ray tracing, whose goal is to use the distances 
d recorded in the shape map to locate the intersec-
tion of the viewing ray and the revolved surface. The 
current pixel has coordinates (u,v), and the start point 
p0 of the search has coordinates (x0, y0, z0)=(u,v,0). 
The normalized viewing ray is determined from the 
viewing point to the starting point p0. The blue chan-
nel (figure 4b) is used, at each point pi, to extract the 
distance di. The point pi+1 is calculated by the formula:

 » Figure 6: At the intersection point pint, the process for 
computing the tangent and normal vectors

To access the shape map and retrieve the distance  
di between the current point and the form, the revolu-
tion algorithm uses the coordinates (si,ti) (Figure 6).  
Using the equation below:

Shading

For each intersection point found by the ray tracing  
algorithm, the next step is to identify the tangent 
space (TBN). This space will enable shading of the 
pixel correctly using the following equation:

With

According to Figure 6, the normal is constituted by 
the components Gintx and Ginty of the gradient unit:

The tangent can be determined by the  
following equation:

Basic shape
(a)

Height map 
H(u,v)

Red channel

Displacement map

Green channel

The x and y values of normal
(c) (d)

Distance map
(b)

Shape map
(e)

(2)

(3)

(4)

(5)

(6)
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The vector Bint is calculated by using the formula:

Shape box

Applying the shape map to a simple polygonal mesh 
structure, such as a plane as shown in Figure 7a, will not 
completely render the 3D object created by revolution 
mapping. This is because the geometry is only visible 
from the textured surface of the polygons. To create and 
display complete 3D objects regardless of the viewing 
ray direction, this technique implements a solution that 
consists of enveloping the virtual volume in revolution  
with a shell space made of a single box. This envelope is  
called a shape box (Figure 7b).

 » Figure 7: Highlighting the problem associated with 
applying the shape map to a simple plan (a)  
This problem is solved by using a shape box (b)

Texturing function

In the context of our contribution, our goal is closely 
related to the precise determination of the color of a 
revolved object.  
 
To achieve this, we rely on two fundamental elements: 
the color map and the displacement map. These ele-
ments are crucial for each intersection point pint.

The process we've developed consists of several key 
steps. First, it is imperative to accurately calculate the 
texture coordinates, which we denote by (ξint, ηint).  
These coordinates are of paramount importance  
because they are used to access the information  
contained in the color map and the displacement map.  

These maps meticulously wrap around the revolved  
object (Figure 8).

 » Figure 8: To properly texture the revolved object 
(below), we need to apply the color map to the object 
and the partial derivative map, using the appropriate 
projection for the object

By accessing the color map, we can extract the  
information needed to determine the specific color of 
each intersection point. In addition, by consulting the 
displacement map, we have the elements we need to 
evaluate displacement variations as a function of posi-
tion. This is crucial for our purpose, as it allows us to 
retrieve the desired values related to the color and  
displacement properties of the 3D object.

Direct use of the coordinates (xint,yint,zin) allows only 
simple mapping with planar projection, which is well 
suited for a flat surface, but not for a revolved surface. 
The latter requires cylindrical or spherical projection, 
as shown in Figure 9. This distinction becomes clear 
when we look at Figure 9, where we can easily see 
that the use of a spherical or cylindrical projection 
must be adjusted according to the specific geometry 
of the revolved object. This adjustment is crucial to 
avoid visual errors, which are marked in Figure 9.

This problem also arises when revolution mapping is 
extended to variations such as revolution-bump map-
ping, extended, beveled, or chamfered mapping. Our 
fundamental goal is to give revolved objects a realistic 
texture that reflects their shape and appearance. To 
achieve this, we propose a two-step methodology. In 
the pre-processing stage, we propose to associate the 
appropriate projection type directly with the revolved 
object by integrating it with the name of the shape map.  
This approach greatly simplifies the management of dif-
ferent projections and ensures that each object receives 
the correct texture according to its unique geometry. 
 
However, the key step is the rendering phase. This is 
where the information previously encoded in the name 
of the shape map comes into play.  

(7)

(8)

(a)

(b)

˿
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During the rendering stage, we extract this information 
to select the projection that perfectly matches the 
revolved object that we want to render.  
 
By doing so, we succeed in transcending the constraints 
of simple projections and offering realistic textures, thus 
contributing to the visual quality and verisimilitude of 
revolution-generated objects, as shown in Figure 9.

To accurately ascertain the texture coordinates, and 
given that the texturing process must be applied to each 
replica, it is imperative to consider only the fractional  
portion of the intersection point coordinates:

Cylindrical projection

For cylindrical projection mapping, we use the cylindri-
cal coordinates of the intersection point pint, expressed 
with respect to an axis centered on the shape box:

With:

We deduce the value of φ:

The texture coordinate ηint is equal to z'int. 
As for ξint, it changes from 0 to 1 when φ 
changes from π to -π. We then have:

For revolution-bump mapping, use (Ox,Oy) 
instead of (0.5,0.5) if the axis of revolu-
tion is not centered on the shape box.

Spherical projection

Based on the intersection point's spherical coordinates,  
the spherical projection mapping is produced, expressed  
with respect to a reference frame placed at the centre  
of the shape box.

With:

We deduce the values of φ and θ:

ξint varies in [0,1] when φ goes from π to π, and ηint int 
varies in [0,1] when θ goes from π to 0. Then we have:

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

 » Figure 9: Rendering of the various 3D objects created in real-time by revolution-bump mapping, using spherical  
projection (left) and cylindrical projection (right). The red outline shows the texturing defects on the revolution surfaces
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Results and discussion

In the pre-processing stage, we implemented the  
algorithms using the C++ language to produce the  
displacement map and the shape map. During the  
rendering stage, we exploited OpenGL and its  
parallel processing language, GLSL, to create the  
vertex and fragment shaders.

During the rendering stage, in addition to the coordi-
nates associated with the shape box, the two maps creat-
ed during the preprocessing stage are transmitted to the 
graphics card. The analyses and illustrations were exe-
cuted using an 8CPU Intel Core i7-11657G7 architecture 
at 2.80GHz, equipped with 8GB of RAM, and a GeForce 
MX330 graphics card with 4GB of dedicated memory.  
In this paper, the images provided were taken during 
a test in which the box occupies a significant part 
of the screen. We would like to note that the total 
number of iterations to find the intersection is 20, 
except for the beveled revolution mapping (35 iter-
ations, of which 10 are for binary refinement), as 
well as the revolution mapping with chamfer (20 
iterations, of which 35 are for the chamfer phase).

As shown in Figure 10, our approach correctly textures 
objects created by the revolution-bump mapping 
extensions: outward, beveled, and chamfered rev-
olution-bump mapping. Our contribution perfectly 
adapts to the geometry of the rendered object. 

Figure 11 shows additional examples of well-textured 
surfaces, using either cylindrical or spherical projection,  
depending on the object's geometry. These 3D objects 
are generated with revolution-bump mapping, using 
various shape and displacement maps. We can empha-
size how many different kinds of objects can be made 
with this technique, as well as how many graphical 
primitives (polygons and vertices) can be avoided. 

Figure 12 shows 3D objects rendered using revolution 
bump mapping with spherical projection (Figure 12a) 
and cylindrical projection (Figure 12b) by applying 
repetition to the texture and displacement map.

It should be noted that the improvement presented in  
this paper also applies to the other revolution mapping  
techniques, i.e. revolution with mirror and repetition  
(see Figure 13).

e = 0.25 b = 0.4 b = 0.6  c = 0.6

 » Figure 10: Extension of revolution-bump mapping. (a) Outward, (b) Beveled, and (c) Chamfered revolution-bump 
mapping. For each method, the spherical projection is on the left and the cylindrical one is on the right

 » Figure 11: Various objects are rendered using revolution-bump mapping by adjusting the texturing function to the 
rendered surface. (Top) Cylindrical projection. (Bottom) Spherical projection
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 » Figure 12: Various objects are rendered using revolu-
tion-bump mapping with adjustment of the texturing 
function and application of repetition to the texture 
and displacement map. (a) Spherical projection. (b) 
Cylindrical projection

 » Figure 13: Various objects are rendered using revolu-
tion-bump mapping with adjustment of the texturing 
function and application of repetition to the texture 
and displacement map

Note that our contribution has no impact on rendering 
speed. There is not much difference between revolu-
tion-bump mapping and revolution-bump mapping with 
texture function adjustment according to the geometry 
of the revolved object. Our improvement fully preserves 
all the features and properties of revolution-bump map-
ping and its extensions. In addition, we found that this 
improvement has no impact on the complexity of the 
raytracing algorithm since the revolution mapping algo-
rithms always have linear complexity in O(n). As a result, 
the complexity of the algorithm is always linear. It's 
also worth noting that the memory used by the shape 
map does not exceed 10 MB, while the partial deriva-
tives map does not exceed 4 MB. This ensures that the 
memory of the graphics card is not saturated, thus guar-
anteeing the continuous interactivity of the 3D scene.

Conclusion

This research presents an enhancement of revolu-
tion-bump mapping and its extensions. Our contribution 
makes it possible to adjust the texture of the revolution 
surface in real-time while enriching the visual quality of 

the rendered objects. This improvement avoids over-
loading the graphics pipeline that can result from pro-
cessing a large number of polygons and vertices.  
It focuses on determining the displacement and color  
values at each intersection point using the displacement  
map and color map.  
 
This requires a careful determination of the texture 
coordinates and an adaptation of the texturing function 
to the geometry of the revolved object. for this, we have 
included the type of projection in the name of the shape 
map which will be appropriate to the object to be gener-
ated during the rendering phase. Our contribution relies 
only on the use of two different textures, a box, and the 
tangent space at each intersection point.  
 
The first texture, or shape map, is used to generate 
the revolved surface, and the second texture, or dis-
placement map, is used to integrate the microrelief 
effects. However, in the rendering stage, we adapt the 
rendering of the 3D object by using the appropriate 
texturing function. The improvements we propose are 
in line with the two goals we set out in the introduction: 
to meet rendering speed requirements and to present 
revolution models in a particularly convincing way.
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