
Tri-objective parallel machine with job splitting and 
sequence dependent setup times using differential 
evolution and particle swarm optimization   

1. Introduction

Industrial machines, when placed to operate a 
group of identical or similar jobs, are generally as-
signed to perform those operations at the same time 
duration in order to increase output capacity. De-
termining optimal ways to schedule jobs for those 
machines is called parallel machine scheduling prob-
lem (PMSP) which is known to be NP-Hard (Non-
deterministic Polynomial-Hard). Specifically, PMSP 

is concerned with allocating a set of jobs to a number 
of parallel machines in order to optimize some mea-
sures of effectiveness e.g. minimization of makespan 
and cost under some production constraints e.g. re-
source capacities, operation procedures and time. 
There are three major categories of PMSP: (1) iden-
tical PMSP (2) uniform PMSP, and (3) unrelated 
PMSP [1]. Identical and uniform PMSP are defined 
as machines processing the same jobs with identical 
and different speeds, respectively, while unrelated 
PMSP is defined as machines processing different 

Parallel machines scheduling problems (PMSPs) exist in the industry since most manufac-
turing operations aim to produce lots of similar products in a defined time period. Some 
incoming jobs have different sizes and due dates; plus, the production capacity, setup time, 
job processing time and energy requirement of each machine can be different, possibly due 
to distinct models and brands. In addition, jobs can be split into sublots and processed inde-
pendently on any machine; and the setup times of machines also depend on job sequences. 
As such, the production management involving those machines becomes exceedingly com-
plex, particularly when the problem has multiple objectives. To obtain optimum solutions, 
it would require complicated mathematical model along with a solver software; however, 
metaheuristic algorithms might be needed if a problem becomes too large. This study ap-
plied two metaheuristic algorithms, namely differential evolution (DE) and particle swarm 
optimization (PSO) to the tri-objective PMSP with job splitting and sequence dependent 
setup times (PMSP-JSSDST) in order to obtain solutions with simultaneously minimized 
makespan, tardiness and total energy consumption. Both algorithms were used to solve the 
PMSP-JSSDST instances with some small instances being run on a commercial solver for 
control purpose. Then, the performances of DE and PSO were compared using hypervol-
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jobs with different speeds. Moreover, PMSP might 
include sequence dependent setup times (SDST) as 
an additional feature where the setup times of ma-
chines depend on jobs’ orders of operation [2]; par-
ticularly, this kind of PMST is called PMSP-SDST. 
Job splitting is another feature that increases the com-
plexity of PMSP. In this case, each job can be split 
into sublots and independently processed on any 
of parallel machines. Although job splitting reduces 
completion times of certain jobs, it increases overall 
setup frequency and delays completion of other jobs 
[3]. Thus, it is very important to find an appropri-
ate number of sublots to be split from each job in 
order to meet desired objectives. Most studies on 
PMSP focus on a single objective problem especially 
on the minimization of makespan; however, PMSP 
with a single objective might not actually reflect the 
real-world challenges on parallel machine produc-
tion where time, energy, manpower costs and mate-
rial resources are also crucial factors. As such, PMSP 
that encompasses multiple objectives such as mini-
mization of flow time, total tardiness, power cost, and 
makespan could be more suitable in the actual paral-
lel machine production line.  

This research considers the PMSP with job split-
ting and sequence dependent setup times, called 
PMSP-JSSDST, having triple objectives of minimiz-
ing makespan, tardiness and energy usage. Essential-
ly, the study utilized the pareto-based optimization 
technique for this multi-objective problem where 
non-dominated solutions were determined in a single 
experimental run. The particular problem also takes 
into account the inequality of job sizes which can be 
split into sublots and distributed to be processed on 
available machines with different capacities, setup 
times, job processing times, sequence dependent set-
up times, energy usage rates and startup energy rates 
(energy usage spike at startup time). The concept of 
including startup energy as one of the essential pa-
rameters is that it could discourage the deployment 
of some machines unless totally necessary since high 
cost is assumed when a machine starts. Specifically, 
in this research, criteria of the PMSP-JSSDST are 
defined as follows: (1) jobs can be split to be pro-
cessed on any parallel machines (2) setup times de-
pend on the job sequence (3) production capability 
of each machine is not equal (4) energy usage of each 
machine is not equal (including startup energy), and 
(5) production time does not depend on job sizes. 
Two metaheuristics, differential evolution (DE) and 
particle swarm optimization (PSO) have been ap-
plied to solve such PMST-JSSDST. The solution 
representation of encoding and decoding procedure 

to transform a solution of continuous values into a 
practical schedule is presented. Then, the optimiza-
tion performances between those two metaheuris-
tics algorithms were compared using hypervolume 
indicator [4]. Moreover, parameter optimization 
procedures were conducted for both DE and PSO 
algorithms before the actual experimental runs such 
that suitable parameter settings were obtained. There 
were also several simple problems instances (PMST-
JSSDST having low number of jobs and machines) 
that were used as a control group. Those problem 
instances were intended to be solved by LINGO [5] 
- a commercial solver software – and also by both me-
taheuristics algorithms in order to ensure reliability 
and efficiency of the optimization program. 

 The proposed model and solution of PMSP-
JSSDST can be applied to, for instance, the heat 
treatment process of metal parts in which the parts 
can be split to various heat treatment machines and 
setup times depend on job sequence where differ-
ent jobs require distinct temperature profiles; for ex-
amples, setup times from Job1 to Job2, where Job2 
requires higher temperature profile, would be faster 
than those from Job2 to Job1 since heating is gen-
erally faster than cooling. Moreover, the production 
time of heat treatment process of each machine does 
not depend on job sizes since all parts in the same 
machine must undergo the same temperature pro-
file; and the production capability and energy usage 
of each machine might not be equal. The main con-
tribution of this research is the presentation of math-
ematical model for tri-objective PMSP-JSSDST, the 
development of tri-objective pareto-based optimiza-
tion (TOPO) framework to deal with multi-objective 
(MO) problem, the application of metaheuristics to 
the problem with new proposed solution representa-
tion of encoding and decoding procedures, and the 
use of hypervolume indicator to evaluate metaheuris-
tic’s performances.

The rest of the article is organized as follows. Sec-
tion 2 presents literature reviews related to PMSP 
and algorithms used in this research. Data, mathe-
matical model, method frameworks, and solution de-
scription are given in section 3. Finally, experimental 
results and conclusion are provided in section 4 and 
5, respectively.

2. Literature Review

Parallel machine scheduling problem (PMSP) re-
fers to a problem that attempts to assign a collection 
of jobs such as machining and painting of automobile 
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parts to a defined number of parallel machines – ma-
chines performing similar operations simultaneously 
– in order that some essential operational parameters 
e.g. makespan, mean flow time and number of tardy 
jobs could be optimized. PMSP also has to take into 
account any constraint that might be present in the 
operation; for instances, process criteria and resource 
availability. There are many variants of PMSP, which 
vary in the objectives, number of objectives, opera-
tional conditions and constraints. The One of the 
less studied variants is the PMSP with sequence de-
pendent setup times (PMSP-SDST) which is consid-
ered to be relatively new in the field [6]. SDST refers 
to the setup times that depend on the sequence of 
jobs. Some jobs could associate with different prod-
ucts and the setup time for a process change from 
product A to product B could be different to that 
from product B to product A, for instance. More-
over, the setup times also rely on the technological 
similarities between jobs [7] in which more identical 
technological requirements lead to less setup times. 
A good example of SDST would be the tool changes 
on a CNC machine where the change from a simple 
part demanding a few cutting tools to a complex part 
demanding a large number of tools would require a 
large setup time; and it would require less setup time 
the other way around [8]. SDST, when related, is a 
major aspect in production scheduling problems and 
problems with SDST are considered to be relatively 
challenging to solve [2]; even the scheduling prob-
lems with SDST having a single machine is NP-hard 
[9]. Therefore, PMSP-SDST with the single objec-
tive of minimizing makespan is also NP-hard [10]. 
Another variant of PMSP might even include both 
SDST and JS (job splitting) in the same problem, 
called PMSP-JSSDST. Sethanan et al [11] employed 
two metaheuristics algorithms, DE and PSO, to solve 
a PMSP-JSSDST with the single objective i.e. makes-
pan, where the problem was based on the machine 
operations in a fruit beverage factory. They found that 
the performances of DE were unambiguously better 
than those of PSO. Furthermore, PMSP-JSSDST 
was applied to the job-shop scheduling problem with 
a single objective that tried to minimize total tardiness 
of all jobs [3]; and they used Tabu Search and Simu-
lated Annealing algorithms - both metaheuristics – to 
determine the optimized solutions.  

Most of the PMSP studies emphasize on the 
single objective (SO) optimization especially the 
minimization of makespan [11], [12]. However, in 
practical use cases, there are other essential objec-
tives such as total tardiness, power cost and mini-
mization of machine load variation as well. A study 

by Torabi et al [13] explored the unrelated-PMSP 
(UPMSP) problem where a novel fuzzy model was 
created to optimize three objectives: total weighted 
tardiness, machine load variation, and total weighted 
flow time. In addition, such optimization problem 
was inspired by the manufacturing of various cables 
and wires in which specific machines and resources 
are required to process each job. Fang and Lin [14] 
tried to solve a PMSP problem using EDD (Earliest 
Due Date) method with double objectives – minimi-
zation of job tardiness penalty and total energy cost; 
in addition, the problem allowed the adjustment of 
machine processing power which, in this case, is 
the CPU frequency during workload to pursue bet-
ter equilibrium between energy consumption and 
job processing time. Another PMSP problem which 
dealt with the minimization of energy usage and total 
tardiness employed the Ant optimization algorithm 
based on ATC heuristic rule (ATC-ATO method) 
for optimization operation and Taguchi method for 
determination of optimal parameters [15].

Wisittipanich and Kachitvichyanukul [16] pre-
sented a new multi-objective differential evolution 
(MODE) algorithm which employs data in the elite 
collection (non-dominated/Pareto solutions) in or-
der to devise new mutation strategies based on the 
differential evolution algorithm. The optimization 
models based on the use of elite group are quite ef-
fective for the multi-objective problems. Mihaly and 
Kulcsar [17] used a novel hybrid algorithm to solve 
multi-objective multi-project scheduling problems. 
DE algorithm can also be applied to several PM-
SPs. Li et al [18] applied DE embedded with chaos 
theory to the PMSP in a real industrial lace dyeing 
process to minimize total tardiness and proved that 
the proposed algorithm performed better than the 
actual industrial scheduling system. Wang et al [19] 
investigated the PMSP using DE with the new cross-
over/mutation methods combined with local search 
in order to minimize makespan and claimed that 
their hybrid DE algorithm was efficient and viable. 
Moreover, another metaheuristics algorithm called 
particle swarm optimization or PSO was combined 
with clonal selection algorithm (CSPSO) in order to 
solve the parallel machine problem that tried to mini-
mize the total tardiness [20]. Furthermore, Alharkan 
et al [21] utilized PSO and tabu search algorithms to 
optimize the scheduling of parallel machines with a 
single server (could be an operator or robot) in order 
to minimize makespan.      

PSO, proposed by Kennedy and Eberhart in 
1995 [22], is a population-based random search tech-
nique that imitates the behavior of fish schooling or 
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birds flocking. In PSO, a solution is represented by a 
particle, and a swarm of NP particles forms the pop-
ulation of PSO. Each particle consists of two main 
attributes which are position and velocity. The evolu-
tionary concept of PSO is that each particle applies 
the cognitive knowledge of its experiences (personal 
best, pbest) and the social knowledge of the swarm 
(global best, gbest) to guide itself toward the better 
position. In particular, the new position of a particle 
is governed by three main control parameters; inertia 
weight, personal best coefficient (cp), and global best 
coefficient (cg). These processes are repeated until a 
stopping criterion is met. 

DE, proposed by Storn and Price in 1997 [23], 
is a population-based random search technique for 
global optimization over a continuous search space. 
A solution in DE is represented by the D-dimension-
al vector, and the population of DE consists of NV 
vectors. The key idea of DE evolutionary process 
is its distinct mechanism for generating new vectors 
through repeated cycles of three main operations: 
mutation, crossover, and selection. The use of few 
control variables; Scale Factor (F) and Cross-over 
rate (Cr) constitutes DE to search efficiently and 
fast. In selection operation, the re-placement of an 
individual vector occurs only if the better solution 
is found. As a consequence, DE is able to generate 
better diverse solutions since the best solution in the 
population does not exert any influence on the other 
solutions in the population.

To evaluate the quality of non-dominated solu-
tions from a multi-objective optimization problem, 
recently the hypervolume indicator has been utilized 
extensively. The hypervolume indicator simply refers 
to the hyper-volume between a given reference point 
and a non-dominated front (Pareto front) [24]. Con-
sidering minimization of all objectives, the indicator 
basically maps the solution point sets in the hyper-
space to the measure of the volume body which is 
dominated by those point sets and bounded by a cho-
sen reference point. Sometimes, this indicator is re-
ferred to as “the size of dominated hyperspace” [25].

3. Materials and Methods

3.1 Dataset

There were a total of 37 problem instances for 
the experiment, and all the instances were randomly 
generated with the number of jobs/machines rang-
ing from low to high. The first seven instances were 
quite small where the number of jobs and machines 

were relatively low; and these small problem instanc-
es were intended to be additionally solved with the 
commercial solver – LINGO. The rest of problem 
instances (30 instances) are larger instances where the 
number of jobs and machines were relatively high.

3.2 Mathematical Model

In this study, the PMSP-JSSDST is modelled as a 
mixed integer linear programing (MILP). The prob-
lem assumptions are listed as followed.

1. All data used in the experiment such as pro-
cessing time, setup time, changeover time, 
and energy consumption rate are determin-
istic.

2. Each job can be split into several sublots, and 
the maximum number of sublots is deter-
mined according to the minimum machine 
capacity. 

3. The changeover time of jobs are sequence-
dependent.

4. Energy usage is based on electrical usage 
only.

5. All jobs are equally important.
6. Preemption of jobs is not allowed.
7. Machine breakdown are not considered.

Indices, parameters, and decision variables used 
in the model are defined as follows.

Indices
i, j : Job index (i, j = 1, 2, 3, …, Nn)
m : Machine index (m = 1, 2, …, Nm)
t,k : Job sublot index (t,k = 1, 2, …, Nt)

Parameters
Nn : Number of jobs
Nm : Number of machines
Nt : Number of maximum sublots of each job
PTim : Processing time of job i on machine m
SSij : Changeover time of job i to job j on 

machine m
STm : Setup time of machine m
Capm : Capacity of machine m
Qi : Production quantity of job i
SRm : Energy usage for start-up machine m
Rim : Energy usage for processing job i on 

machine m
G : Big number

Decision Variable
Qitm : Production quantity of job i sublot t on 

machine m
Hitm : Energy usage of job i sublot t on machine m
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CTitm : Completion time of job i sublot t on 
machine m

Z : Production completion time or 
makespan

Xitm = 1 when job i sublot t is processed on 
machine m or 0 otherwise  

Yitjkm = 1 when job i sublot t is immediately 
processed after job j sublot k on 
machine m or 0 otherwise

Wit11m = 1 when job i sublot t is the first operation 
on machine m or 0 otherwise

U11jkm = 1when job j sublot k is the last operation 
on machine m or 0 otherwise

This study focuses on three objectives which are 
1) minimization of makespan 2) minimization of total 
tardiness and 3) minimization of total energy usage. 
The mathematical models are shown as the following.

Mathematical model 1: Minimization of makespan
Objective Function: 

(1)

Constraints:

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

The objective function of minimizing makespan 
is shown in equation (1). Equation (2) indicates that 
the quantity of each job sublot cannot exceed the 
machine capacity. Equation (3) ensures that the total 
production quantity of any job is processed. Equa-
tion (4) states that, besides the first sublot on a ma-
chine, there must be a sublot that precedes other 
sublots on the same machine. Equation (5) states that 
besides the last sublot on a machine, there must be 
a sublot that succeeds other sublots on the same ma-
chine. Equation (6) and (7) guarantee that each ma-
chine can operates at most one first sublot and one 
last sublot. Equation (8) ensures that each job sublot 
is assigned to at most one machine. Equation (9) and 
(10) illustrate the relationship of completion time of 
jobs on each machine. Equation (11) calculates the 
makespan. Equation (12) states that the quantity of 
job sublot is a non-negative. And Equation (3) speci-
fies the binary decision variables.

Mathematical model 2: Minimization of total tardi-
ness

Objective Function:

(14)

Constraints:

  
(15)

(16)

     
The objective function of minimizing total tardi-

ness of jobs is illustrated in equation (14). In addition 
to constraints (2) to (13), two constraints regarding to 
job tardiness are added in this model. Equation (15) 
and (16) represent the tardiness calculation of each 
job which cannot be negative values. 
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Mathematical model 3: Minimization of total energy 
usage

Objective Function 

(17)

Constraints

(18)

(19)

(20)

The objective function of minimizing total ener-
gy usage is shown in equation (17). Additional con-
straints related to energy usage are added. Equation 
(18) and (19) ensure the relationship of the energy 
usage for job i on each machine must be greater than 
or equal to energy usage for starting-up a machine 
and operating a job sublot on that machine. Equation 
(20) determines the total energy usage on machine m.

3.3 Tri-objective pareto-based optimization 
framework

Most traditional optimization techniques have 
been developed for optimizing only one single ob-
jective. When multiple objectives are considered in 
the problem, most research often simplify the prob-
lem by linearly combining different objectives into 
one objective with priority weights; and a solution is 
obtained based on predetermined weights. The dif-
ficulties of this approach are that a solution highly 
depends on given weights of a decision maker, and 
different decision makers are subjected to different 
perspectives. 

Different from single-objective optimization, the 
pareto-based optimization is a weight-free method 
which aims to search for a set of non-dominated so-
lutions instead of one single solution. Consequently, 
it allows decision makers to simultaneously find the 
trade-offs or non-dominated solutions on the Pareto 
front in a single run without prejudice. 

Unfortunately, the approach of pareto-based op-
timization is more difficult and different from single 
objective for several aspects. First, the mechanism to 
select the best member, and, second, the way to eval-
uate the quality of solutions. Therefore, an efficient 
algorithm is required in order to find a set of high 
quality non-dominated solutions (Introduction). This 

study proposes a tri-objective pareto-based optimiza-
tion (TOPO) framework to deal with multi-objective 
(MO) problem as shown in Figure 1.

The TOPO framework begins with initializing 
population in a random manner. Next, each popula-
tion member is evaluated with three different objec-
tives. Then, similar to the Elitist structure in NSGA-
II [26] and other pareto optimization frameworks, 
the population experience is stored in an external 
archive, called Elite group, as a set of non-dominated 
solutions. In TOPO, instead of applying the sorting 
procedure in Elite group to every single evolution of 
a member, the sorting is only performed on the set 
of newly generated population in order to identify the 
group of new non-dominated solutions. This sorting 
procedure applies to the group of new solutions and 
current solutions in the external archive and store 
only non-dominated solutions into an archive for the 
Elite group. Then, Elite group screens its solutions to 
eliminate inferior solutions using hypervolume indi-
cator. These processes are repeated until a stopping 
criterion is met. As a consequence, the Elite group 
in the archive contains only the best non-dominated 
solutions found so far in the searching process.

3.4 Solution representation

To apply PSO and DE for a combinatorial prob-
lem of parallel machine problem, the solution repre-
sentation is required to transform the real number of 
D-dimensional space into practical schedule. Figure 
2 presents the procedures of solution representation 
with encoding and decoding scheme. An example of 
parallel machine with 2 jobs and 2 machines in Table 
1 is used to illustrate the solution representation pro-
cedures in this study.

The solution representation procedure starts with 
the encoding process which aims to represent a solu-
tion as a string of dimensions. First, the number of 
possible maximum sublots of each job is determined 
by dividing the production quantity of job by mini-
mum machine capacity. Then, the number of pos-
sible maximum sublots of all jobs are summarized as 
No. maximum sublots. The number of dimensions 
(D) is calculated as equation (21), and each value in 
a dimension is initially filled with a uniform random 
number in the range [0, 1].

(21)

In this example, the maximum sublots of J1 is 
30/20 = 2 sublots and the maximum splits of J2 is 



270Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

Figure 1. The tri-objective pareto-based optimization (TOPO) framework dealing with multi-objective (MO) problem

Figure 2. Solution representation procedures
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50/30 = 3 sublots. Thus, the number of dimensions is 
5*(2+1) = 15 dimensions. Supposed that each value 
in a dimension is initially generated with a uniform 
random number between 0 and 1, a random key 
representation of a D-Dimensional string is shown in 
Figure 3.

For the decoding process, a D-dimensional string 
is divided into 2 main parts. The first part denoted 
the possible maximum job sublots, and the second 
part is related to the selection of machines. In this 
example, as shown in Figure 4, dimension 1 to 5 
represents 5 maximum sublots, dimension 6 to 10 
stands for machine 1, and dimension 11 to 15 stands 
for machine2.

Next, the process to transform a D-Dimensional 
string to a solution comprises three main stages: (1) 
the determine the permutation of job sublots (2) de-

termining the machine selection and (3) the assign-
ment of each sublot to a machine. The permutation 
of job sublots is performed according to the permu-
tation of n-repetition of n jobs with ascending sort 
rule. The machine selection is decided using the 
maximum-value rule. Then, in the assignment stage, 
each job sublot is assigned to a machine accordingly. 
Figure 5(a) illustrate the permutation process. Figure 
5(b) show and Figure 5(c) show the assignment of 
each sublots to a machine to process according to the 
dimension value.

Then, the parallel machine schedule is obtained 
by taking the first sublot from the sequential orders, 
then the second sublot, and so on until all job quan-
tities are considered. In the process of generating a 
schedule, each sublot is processed on the selected 
machine in the best available position without delay-

Figure 3. Random key representation of a D-Dimensional string

Figure 4. Representation of a D-Dimensional string to an example

Parameter
Value

Job 1 Job 2

Job Quantity 30 50

Due Date 50 100

Machine1 Machine2
Machine Capacity 20 40

Machine Setup Time 5 4

Job Processing Time 
  

Sequence Dependent Setup Time
   

Startup Energy [M1  M2] [0.8715  0.5987]

Energy Usage
   

Table 1. Data example of parallel machine with 2 jobs and 2 machines 
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ing other scheduled sublots. Thus, this procedure al-
ways results in an active schedule. According to this 
example, the final schedule is obtained as Figure 6. 

Then, three objectives are evaluated accordingly; 
Makespan = 106, Tardiness = 16, and Energy usage 
= 21.3132.

It is worth noting that although the proposed de-
coding method always generate a feasible and active 
schedule, there are some limitations. In the decoding 
stage of machine selection, each job sublot is assigned 
to a machine according to the maximum-value rule, 
which often results in diversity of solutions without 
any bias. However, there are also disadvantages with 
this rule because the machine assignment is pre-de-
termined without considering the current scheduled 
sublots. In addition, the schedule is not dynamically 

generated given the multi-objectives. As a conse-
quence, this method sometimes may not result in 
generating optimal schedule or it may miss a chance 
to obtain better schedule.

4. Experimental Results

4.1 Parameter settings of metaheuristics and 
test instances

Generally, the settings and adjustments of crucial 
parameters of any metaheuristic algorithms most like-
ly affect its optimization performances, more or less. 
Setting appropriate parameters could also decide 
how well an algorithm performs and also how fast the 

Figure 5. Decoding procedures to transform D-dimensional solution
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solutions could converge. The performance of the 
proposed methods was tested using 37 randomly gen-
erated test instances. The problem sizes are classified 
as small, medium, and large depending on the maxi-
mum number of possible sublots. The parameters of 
each problem size are shown in Table 2.

In this study, parameter optimization processes 
were performed for both DE and PSO algorithms. 

However, there was one common parameter not di-
rectly related to the core models in both algorithms 
which was the “PercentRandom” – the percentage of 
iterations that use random vector members to evolve 
a predecessor vector (otherwise it would use a vec-
tor from the elite group.). Thus, for running the DE 
algorithm, there were three parameter sets: (1) Fmax/
Fmin (2) CRmax/CRmin, and (3) PercentRandom 

Figure 6. Scheduling of jobs

Parameters
Problem Size

Small Medium Large
Sublot size < 30 30 – 220 > 220

Nn 2 - 4 4 – 25 25 - 30

Nm 2 - 3 3 - 20 20 - 35

Capm 10, 20, 40 10, 20, 40, 60 10, 20, 40, 60

PTim U[10, 50] U[10, 50] U[10, 50]

SSij U[0.1(PT), 0.25(PT)] U[0.1(PT), 0.25(PT)] U[0.1(PT), 0.25(PT)]

STm U[0.1(PT), 0.15(PT)] U[0.1(PT), 0.15(PT)] U[0.1(PT), 0.15(PT)]

SRm U[2, 2.5] U[2, 2.5] U[2, 2.5]

Rim U[4, 35] U[4, 35] U[4, 35]

Table 2. Parameters for test instances  
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which were altered in experiment trials during the 
parameter optimization process. And each param-
eter set comprises 3 values as shown in Table 3. As 
such, for each data instance, there were a total of 27 
trial runs (equal to the number of parameter combi-
nations i.e. 33). However, those trial runs were only 
applied to the problem with medium size: J20M10 
(number of jobs =20, number of machines =10). 
Then, a parameter combination yielding the best 
optimization performance was selected for all of the 
problem instances in the experimental runs. And for 
PSO algorithm, there were also three parameter sets: 
(1) wMax/wMin (2) TopEP/BotEP, and (3) Percent-
Random as shown in Table 4. And the procedure to 
find the best parameter combination was similar to 
that of DE algorithm. Those methods for parameter 
optimization resulted in parameter selection as fol-
lows: for DE| Fmax/Fmin = 1.5/0.5|CRmax/CRmin 
= 0.5/0.1|PercentRandom = 60, for PSO| wMax/
wMin = 0.4/0.9|TopEP/BotEP = 0.1/0.2| Percent-
Random = 60. It is noted that these selected param-
eters are underlined in both Table 3 and Table 4.

For both algorithms in each run of a problem in-
stance, the population/swarm sizes (DE utilizes pop-
ulation size while PSO uses swarm size) depended 
on how large a problem was; note that a problem 
size equals to the number of maximum job sublots. 
For examples, a small problem (sublot size <30) 
matches with the population/swarm size of 200, and 
a medium problem (30≤ sublot size ≤220) matches 
with the population/swarm size of 500. However, 

the number of iterations remain constant regardless 
of the problem size; and both algorithms employed 
the same encoding/decoding procedure regardless 
of the problem sizes. Tables 5 shows the population 
or swarm size and number of iterations used for dif-
ferent problem sizes in the numerical experiment of 
metaheuristics. It is noted that these settings were em-
pirically determined from preliminary experiments.

4.2 Computational results

For this research, the metaheuristics algorithms 
were implemented by the Python programming 
language [27] under PyCharm IDE [28] version 
2020.3.1 in Ubuntu operating system version 20.04.5 
LTS. The optimization application ran on the plat-
form Intel® CoreTM i7-10750H CPU 2.60 GHz 
with 32 GB of RAM. The performance comparisons 
between DE and PSO algorithms were evaluated us-
ing the hypervolume indicator provided by the Py-
thon library pygmo version 2.18 [29]. There were a 
total of 37 instances in which the first seven instances 
were solved with DE and PSO algorithms as well as 
the solver software – LINGO; and the other 30 data 
instances were solved with only DE and PSO algo-
rithms. LINGO is an optimization tool designed to 
solve both linear and non-linear models which aims 
to find the exact solution for each optimization prob-
lem. However, for some problems that are quite 
large, LINGO might take a long time to determine 
the solution (in some cases, LINGO could take the 

Parameter Name Value 1 Value 2 Value 3
Fmax/Fmin 2/1 2.5/1.5 1.5/0.5

CRmax/CRmin 0.9/0.1 0.9/0.5 0.5/0.1

PercentRandom 20 40 60

Table 3. Parameter testing for DE algorithm 

Parameter Name Value 1 Value 2 Value 3
wMax/wMin 0.1/0.4 0.25/0.7 0.4/0.9

TopEP/BotEP 0.1/0.2 0.2/0.3 0.3/0.4

PercentRandom 20 40 60

Table 4. Parameter testing for PSO algorithm 

Problem Size Sublot Size Population/Swarm Size Iteration
Small < 30 200 1000

Medium 30 – 220 500 1000

Large > 220 1000 1000

Table 5. Population/Swarm size and number of iterations for different problem sizes in the numerical experiment of DE/PSO 



275 Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

infinite time since a problem is too large). For each 
data instance, the hypervolume indicator values were 
computed using non-dominated solutions obtained 
from both DE and PSO algorithms; and the refer-
ence point for the indicator was calculated by adding 
ten to the maximum value of each objective across 
both results. Note that each data instance has the 
same reference point. In addition, the higher value of 
hypervolume indicator, the better of non-dominated 
solutions quality. Table 7 shows the comparisons of 
hypervolume indicators for all instances solved by 
DE and PSO algorithms, and also percent difference 
(PD) of hypervolume values between them. The for-
mula for PD is given by equation 22.

(22)

From the results in Table 7, the performances of 
DE, PSO and LINGO are identical in the first three 
problem instances where the problems are small (Nn  
= 2, Nm ≤ 3) which means both metaheuristics al-
gorithms could find the solutions similar to the exact 
optimized solutions obtained from LINGO. When 
the problems get larger e.g. instance 4, 5 and 6 (3 
≤  Nn ≤ 4, Nm ≤ 3), both algorithms almost reach 
the exact optimized solutions in all three objectives 
except the energy usage where LINGO needed more 
than 12 hours to achieve the exact optimized results 
for instance 4 and 5 while it could not find the solu-
tion of energy usage for instance 6 at all. Lastly, for 
instance 7 (Nn = 4, Nm = 3), both metaheuristics 
algorithms almost achieve the exact optimized so-
lutions of makespan and even perform better than 
LINGO does in the solution of tardiness; however, 
LINGO could not obtain the exact optimized solu-
tion of energy usage.

For problem instances in which the Nn ≥ 4 and 
Nm ≥ 3, there are only performances results from 
DE and PSO (problems are simply too large for 
LINGO); and the total number of instances in this 
case is 30. Note that the largest instance is D25 where 
Nj = 50 and Nm = 35. From the results in Table 
7, based on the hypervolume indicator values (HV) 
in all of the instances from D1 to D30, the perfor-
mances of DE are clearly superior to those of PSO 
with the average PD of 45.22%. Table 8 presents the 
best optimization results for DE and PSO in each in-
stance (D1 – D30) including 3 objectives: (1) makes-
pan (2) tardiness and (3) energy usage. Note that each 
objective value for each instance is the optimal value 
chosen from a group of non-dominate solutions 
(pareto front). The results from Table 8 show that 
almost all the best makespan values obtained from 
DE (except in the instances D2 and D5) are better 
(lower) than those from PSO. Moreover, all the best 
tardiness values from DE in two instances (D2 and 
D3) are superior to those from PSO (the rest are all 
zeros). And lastly, most of the best energy usage val-
ues gained from DE are better than those from PSO. 
This indicate that DE is capable of finding greater 
non-dominated solutions or better pareto front than 
PSO. Therefore, DE is an alternate effective algo-
rithm for solving this complex parallel machine prob-
lem i.e. PMSP-JSSDST.

5. Conclusion

This research utilized and compared two meta-
heuristics algorithms, namely DE and PSO algo-
rithms, to solve the PMSP-SDST for three optimal 
objectives: makespan, tardiness and energy usage. 
In PMSP-SDST, job sizes were not required to be 

Instance Nn Nm
LINGO DE PSO

MS TD EN MS TD EN MS TD EN
1 2 2 106 16 18.59 106 16 18.59 106 16 18.59

2 2 3 36 11 122.67 36 11 122.67 36 11 122.67

3 2 3 14 2 67.35 14 2 67.35 14 2 67.35

4 3 3 73 81 56.10* 73 81 67.35 73 81 67.35

5 3 2 88 18 106.75* 88 18 116.41 88 18 116.41

6 4 2 77 44 N/A 77 44 44.23 77 44 44.23

7 4 3 95* 164* N/A 99 163 32.53 99 163 32.53

Note. *LINGO takes more than 12 hours to obtain the results, the reported value is lower bound value. Nn = Number of jobs, Nm = Number of 
machines, MS = Makespan, TD = Tardiness and EN = Energy Usage.

Table 6. Experimental results of DE compared with those of PSO and LINGO for seven instances  
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Instance Nn Nm
DE PSO

MS TD EN MS TD EN
D1 4 3 111 0 232.28 112 0 232.28

D2 7 4 136 192 366.67 132 202 364.46

D3 10 4 152 310 408.99 160 319 417.23

D4 10 5 154 0 449.98 156 0 442.04

D5 12 5 74 0 220.37 74 0 219.36

D6 20 10 231 0 1368.75 241 0 1390.55

D7 20 15 144 0 1182.53 151 0 1196.46

D8 25 10 225 0 1443.96 236 0 1437.83

D9 25 15 165 0 1314.94 170 0 1343.37

D10 25 20 167 0 1835.07 166 0 1865.90

D11 30 10 294 0 1809.74 304 0 1777.12

D12 30 15 191 0 1571.79 201 0 1652.29

Table 8. The best value of each objective obtained from DE and PSO  

Instance Nn Nm HV: DE HV: PSO PD (%)

D1 4 3 9122.07 8904.82 2.44

D2 7 4 2124880.60 1911632.91 11.16

D3 10 4 7324427.00 6069451.08 20.68

D4 10 5 4274798.72 3359147.28 27.26

D5 12 5 39099.59 34936.19 11.92

D6 20 10 9259830.10 6160254.80 50.32

D7 20 15 173382.40 113990.30 52.1

D8 25 10 3992856.98 3233869.86 23.47

D9 25 15 191475.50 140014.29 36.75

D10 25 20 175291.55 132414.36 32.38

D11 30 10 31549000.09 30146900.83 4.65

D12 30 15 550634.97 331342.08 66.18

D13 30 19 259763.74 139029.64 86.84

D14 30 25 200260.48 116080.81 72.52

D15 35 10 406045.03 310187.81 30.9

D16 35 15 476594.33 386708.57 23.24

D17 35 20 155061.35 61177.38 153.46

D18 35 25 291461.25 171926.38 69.53

D19 35 30 219609.99 136495.68 60.89

D20 40 10 487905.57 335144.72 45.58

D21 40 15 308834.73 179700.49 71.86

D22 40 19 5571727.61 4352713.57 28.01

D23 40 25 418672.61 311746.46 34.3

D24 40 30 392254.98 265819.21 47.56

D25 50 35 335296.37 186512.26 79.77

D26 50 30 366741.55 257288.49 42.54

D27 50 25 480517.83 308038.04 55.99

D28 50 20 1154778.33 921519.80 25.31

D29 50 15 891359.94 663957.78 34.25

D30 50 10 157507.58 101743.79 54.81

Average 45.22

Table 7. Hypervolume indicator values (HV) and percent difference (PD) for all instances solved by DE and PSO algorithms  
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equal and jobs could be split into small lots such that 
they can be allocated to vacant machines. Essential 
parameters of each machine included setup times, 
sequence dependent setup times, energy usage and 
energy consumption at machine startup time. In par-
ticular, the startup energy usage was included in the 
machine parameters to dissuade the utilization of a 
machine because of high energy cost at the startup 
time, not to mention manpower and machine dete-
rioration costs. 

In order to apply DE and PSO to the problem, 
solution representation with encoding and decod-
ing procedures were designed to obtain feasible 
solutions. Moreover, the parameter optimization 
procedure was implemented for both DE and PSO 
algorithms in order to obtain appropriate values of 
critical parameters. Both metaheuristics algorithms 
were verified for their performances by comparing 
their results with the commercial solver – LINGO 
– in the case of small problem instances, in which 
the results demonstrated that both algorithms, DE 
and PSO, had almost identical performances com-
pared to those of the LINGO. In the case of large 
problem instances, using the hypervolume indicators 
computed from the pareto front to compare optimi-
zation performances of multi-objective problems, the 
results showed that DE clearly outperformed PSO in 
all the problem instances.

For real practice in the production line, the pro-
posed algorithm can be integrated into the existing 
scheduling system to generate an efficient schedule. 

The findings of this study can help in developing vi-
sual tool to continuously monitor schedule status. In 
addition, it helps production planner to make deci-
sion corresponding to different objectives such that 
the organization’s goals are met. The ongoing re-
search have continued to investigate ways to improve 
the algorithm performance, for example, hybridiza-
tion with other metaheuristics and adaptive search 
features. Further studies are recommended to apply 
the proposed algorithm for a wider range of schedul-
ing or related problems and include other realistic 
constraints into the problem.
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D13 30 19 174 0 1754.32 184 0 1811.45

D14 30 25 156 0 1983.32 167 0 2038.75

D15 35 10 230 0 1549.67 253 0 1578.39

D16 35 15 226 0 1838.57 238 0 1914.65

D17 35 20 215 0 2421.24 225 0 2427.16

D18 35 25 180 0 2461.45 190 0 2537.12

D19 35 30 163 0 2491.35 165 0 2558.65

D20 40 10 352 0 2370.89 368 0 2399.24

D21 40 15 214 0 1847.73 225 0 1919.14

D22 40 19 244 0 2650.46 253 0 2736.70

D23 40 25 200 0 2690.59 207 0 2736.57

D24 40 30 205 0 2974.02 207 0 3034.25

D25 50 35 200 0 3667.09 214 0 3686.99

D26 50 30 203 0 2979.60 209 0 3029.99

D27 50 25 201 0 2676.76 210 0 2737.31

D28 50 20 256 0 2849.22 268 0 2882.83

D29 50 15 262 0 2257.76 263 0 2299.48

D30 50 10 340 0 2249.82 349 0 2251.71

Note. Nn = Number of jobs, Nm = Number of machines, MS = Makespan, TD = Tardiness and EN = Energy Usage.
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