
Tri-objective parallel machine with job splitting and
sequence dependent setup times using differential
evolution and particle swarm optimization

1. Introduction

Industrial machines, when placed to operate a
group of identical or similar jobs, are generally as-
signed to perform those operations at the same time
duration in order to increase output capacity. De-
termining optimal ways to schedule jobs for those
machines is called parallel machine scheduling prob-
lem (PMSP) which is known to be NP-Hard (Non-
deterministic Polynomial-Hard). Specifically, PMSP

is concerned with allocating a set of jobs to a number
of parallel machines in order to optimize some mea-
sures of effectiveness e.g. minimization of makespan
and cost under some production constraints e.g. re-
source capacities, operation procedures and time.
There are three major categories of PMSP: (1) iden-
tical PMSP (2) uniform PMSP, and (3) unrelated
PMSP [1]. Identical and uniform PMSP are defined
as machines processing the same jobs with identical
and different speeds, respectively, while unrelated
PMSP is defined as machines processing different

Parallel machines scheduling problems (PMSPs) exist in the industry since most manufac-
turing operations aim to produce lots of similar products in a defined time period. Some
incoming jobs have different sizes and due dates; plus, the production capacity, setup time,
job processing time and energy requirement of each machine can be different, possibly due
to distinct models and brands. In addition, jobs can be split into sublots and processed inde-
pendently on any machine; and the setup times of machines also depend on job sequences.
As such, the production management involving those machines becomes exceedingly com-
plex, particularly when the problem has multiple objectives. To obtain optimum solutions,
it would require complicated mathematical model along with a solver software; however,
metaheuristic algorithms might be needed if a problem becomes too large. This study ap-
plied two metaheuristic algorithms, namely differential evolution (DE) and particle swarm
optimization (PSO) to the tri-objective PMSP with job splitting and sequence dependent
setup times (PMSP-JSSDST) in order to obtain solutions with simultaneously minimized
makespan, tardiness and total energy consumption. Both algorithms were used to solve the
PMSP-JSSDST instances with some small instances being run on a commercial solver for
control purpose. Then, the performances of DE and PSO were compared using hypervol-
ume indicator. The results showed that the performances of both algorithms almost matched
to those of the commercial solver for the small instances. And for the large instances, DE
algorithm offers superior performances compared to those of PSO algorithm, having signifi-
cantly higher values of the hypervolume indicator.

Article history:

Received November 16, 2023
Revised May 17, 2024
Accepted August 6, 2024
Published online September 17, 2024

Keywords:
Parallel machine;
Optimization;
Differential evolution;
Particle swarm optimization;
Hypervolume indicator

*Corresponding author:
Nuttachat Wisittipanit
nuttachat.wis@mfu.ac.th

ISSN 2683-345X

https://doi.org/10.24867/IJIEM-2024-4-362Published by the University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia.
This is an open access article distributed under the CC BY 4.0 terms and conditions.

A B S T R A C T A R T I C L E I N F O

International Journal of Industrial
Engineering and Management

Volume 15 / No 4 / December 2024 / 264 - 278

Original research article

journal homepage: http://ijiemjournal.uns.ac.rs/

a Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand;
b Department of Materials Engineering, School of Science, Mae Fah Luang University, Chiang Rai, Thailand

W. Wisittipanicha 0000-0003-4515-3273, N. Wisittipanitb,* 0000-0002-8170-0230

http://ijiemjournal.uns.ac.rs/
https://orcid.org/0000-0003-4515-3273
https://orcid.org/0000-0002-8170-0230

265 Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

jobs with different speeds. Moreover, PMSP might
include sequence dependent setup times (SDST) as
an additional feature where the setup times of ma-
chines depend on jobs’ orders of operation [2]; par-
ticularly, this kind of PMST is called PMSP-SDST.
Job splitting is another feature that increases the com-
plexity of PMSP. In this case, each job can be split
into sublots and independently processed on any
of parallel machines. Although job splitting reduces
completion times of certain jobs, it increases overall
setup frequency and delays completion of other jobs
[3]. Thus, it is very important to find an appropri-
ate number of sublots to be split from each job in
order to meet desired objectives. Most studies on
PMSP focus on a single objective problem especially
on the minimization of makespan; however, PMSP
with a single objective might not actually reflect the
real-world challenges on parallel machine produc-
tion where time, energy, manpower costs and mate-
rial resources are also crucial factors. As such, PMSP
that encompasses multiple objectives such as mini-
mization of flow time, total tardiness, power cost, and
makespan could be more suitable in the actual paral-
lel machine production line.

This research considers the PMSP with job split-
ting and sequence dependent setup times, called
PMSP-JSSDST, having triple objectives of minimiz-
ing makespan, tardiness and energy usage. Essential-
ly, the study utilized the pareto-based optimization
technique for this multi-objective problem where
non-dominated solutions were determined in a single
experimental run. The particular problem also takes
into account the inequality of job sizes which can be
split into sublots and distributed to be processed on
available machines with different capacities, setup
times, job processing times, sequence dependent set-
up times, energy usage rates and startup energy rates
(energy usage spike at startup time). The concept of
including startup energy as one of the essential pa-
rameters is that it could discourage the deployment
of some machines unless totally necessary since high
cost is assumed when a machine starts. Specifically,
in this research, criteria of the PMSP-JSSDST are
defined as follows: (1) jobs can be split to be pro-
cessed on any parallel machines (2) setup times de-
pend on the job sequence (3) production capability
of each machine is not equal (4) energy usage of each
machine is not equal (including startup energy), and
(5) production time does not depend on job sizes.
Two metaheuristics, differential evolution (DE) and
particle swarm optimization (PSO) have been ap-
plied to solve such PMST-JSSDST. The solution
representation of encoding and decoding procedure

to transform a solution of continuous values into a
practical schedule is presented. Then, the optimiza-
tion performances between those two metaheuris-
tics algorithms were compared using hypervolume
indicator [4]. Moreover, parameter optimization
procedures were conducted for both DE and PSO
algorithms before the actual experimental runs such
that suitable parameter settings were obtained. There
were also several simple problems instances (PMST-
JSSDST having low number of jobs and machines)
that were used as a control group. Those problem
instances were intended to be solved by LINGO [5]
- a commercial solver software – and also by both me-
taheuristics algorithms in order to ensure reliability
and efficiency of the optimization program.

 The proposed model and solution of PMSP-
JSSDST can be applied to, for instance, the heat
treatment process of metal parts in which the parts
can be split to various heat treatment machines and
setup times depend on job sequence where differ-
ent jobs require distinct temperature profiles; for ex-
amples, setup times from Job1 to Job2, where Job2
requires higher temperature profile, would be faster
than those from Job2 to Job1 since heating is gen-
erally faster than cooling. Moreover, the production
time of heat treatment process of each machine does
not depend on job sizes since all parts in the same
machine must undergo the same temperature pro-
file; and the production capability and energy usage
of each machine might not be equal. The main con-
tribution of this research is the presentation of math-
ematical model for tri-objective PMSP-JSSDST, the
development of tri-objective pareto-based optimiza-
tion (TOPO) framework to deal with multi-objective
(MO) problem, the application of metaheuristics to
the problem with new proposed solution representa-
tion of encoding and decoding procedures, and the
use of hypervolume indicator to evaluate metaheuris-
tic’s performances.

The rest of the article is organized as follows. Sec-
tion 2 presents literature reviews related to PMSP
and algorithms used in this research. Data, mathe-
matical model, method frameworks, and solution de-
scription are given in section 3. Finally, experimental
results and conclusion are provided in section 4 and
5, respectively.

2. Literature Review

Parallel machine scheduling problem (PMSP) re-
fers to a problem that attempts to assign a collection
of jobs such as machining and painting of automobile

266Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

parts to a defined number of parallel machines – ma-
chines performing similar operations simultaneously
– in order that some essential operational parameters
e.g. makespan, mean flow time and number of tardy
jobs could be optimized. PMSP also has to take into
account any constraint that might be present in the
operation; for instances, process criteria and resource
availability. There are many variants of PMSP, which
vary in the objectives, number of objectives, opera-
tional conditions and constraints. The One of the
less studied variants is the PMSP with sequence de-
pendent setup times (PMSP-SDST) which is consid-
ered to be relatively new in the field [6]. SDST refers
to the setup times that depend on the sequence of
jobs. Some jobs could associate with different prod-
ucts and the setup time for a process change from
product A to product B could be different to that
from product B to product A, for instance. More-
over, the setup times also rely on the technological
similarities between jobs [7] in which more identical
technological requirements lead to less setup times.
A good example of SDST would be the tool changes
on a CNC machine where the change from a simple
part demanding a few cutting tools to a complex part
demanding a large number of tools would require a
large setup time; and it would require less setup time
the other way around [8]. SDST, when related, is a
major aspect in production scheduling problems and
problems with SDST are considered to be relatively
challenging to solve [2]; even the scheduling prob-
lems with SDST having a single machine is NP-hard
[9]. Therefore, PMSP-SDST with the single objec-
tive of minimizing makespan is also NP-hard [10].
Another variant of PMSP might even include both
SDST and JS (job splitting) in the same problem,
called PMSP-JSSDST. Sethanan et al [11] employed
two metaheuristics algorithms, DE and PSO, to solve
a PMSP-JSSDST with the single objective i.e. makes-
pan, where the problem was based on the machine
operations in a fruit beverage factory. They found that
the performances of DE were unambiguously better
than those of PSO. Furthermore, PMSP-JSSDST
was applied to the job-shop scheduling problem with
a single objective that tried to minimize total tardiness
of all jobs [3]; and they used Tabu Search and Simu-
lated Annealing algorithms - both metaheuristics – to
determine the optimized solutions.

Most of the PMSP studies emphasize on the
single objective (SO) optimization especially the
minimization of makespan [11], [12]. However, in
practical use cases, there are other essential objec-
tives such as total tardiness, power cost and mini-
mization of machine load variation as well. A study

by Torabi et al [13] explored the unrelated-PMSP
(UPMSP) problem where a novel fuzzy model was
created to optimize three objectives: total weighted
tardiness, machine load variation, and total weighted
flow time. In addition, such optimization problem
was inspired by the manufacturing of various cables
and wires in which specific machines and resources
are required to process each job. Fang and Lin [14]
tried to solve a PMSP problem using EDD (Earliest
Due Date) method with double objectives – minimi-
zation of job tardiness penalty and total energy cost;
in addition, the problem allowed the adjustment of
machine processing power which, in this case, is
the CPU frequency during workload to pursue bet-
ter equilibrium between energy consumption and
job processing time. Another PMSP problem which
dealt with the minimization of energy usage and total
tardiness employed the Ant optimization algorithm
based on ATC heuristic rule (ATC-ATO method)
for optimization operation and Taguchi method for
determination of optimal parameters [15].

Wisittipanich and Kachitvichyanukul [16] pre-
sented a new multi-objective differential evolution
(MODE) algorithm which employs data in the elite
collection (non-dominated/Pareto solutions) in or-
der to devise new mutation strategies based on the
differential evolution algorithm. The optimization
models based on the use of elite group are quite ef-
fective for the multi-objective problems. Mihaly and
Kulcsar [17] used a novel hybrid algorithm to solve
multi-objective multi-project scheduling problems.
DE algorithm can also be applied to several PM-
SPs. Li et al [18] applied DE embedded with chaos
theory to the PMSP in a real industrial lace dyeing
process to minimize total tardiness and proved that
the proposed algorithm performed better than the
actual industrial scheduling system. Wang et al [19]
investigated the PMSP using DE with the new cross-
over/mutation methods combined with local search
in order to minimize makespan and claimed that
their hybrid DE algorithm was efficient and viable.
Moreover, another metaheuristics algorithm called
particle swarm optimization or PSO was combined
with clonal selection algorithm (CSPSO) in order to
solve the parallel machine problem that tried to mini-
mize the total tardiness [20]. Furthermore, Alharkan
et al [21] utilized PSO and tabu search algorithms to
optimize the scheduling of parallel machines with a
single server (could be an operator or robot) in order
to minimize makespan.

PSO, proposed by Kennedy and Eberhart in
1995 [22], is a population-based random search tech-
nique that imitates the behavior of fish schooling or

267 Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

birds flocking. In PSO, a solution is represented by a
particle, and a swarm of NP particles forms the pop-
ulation of PSO. Each particle consists of two main
attributes which are position and velocity. The evolu-
tionary concept of PSO is that each particle applies
the cognitive knowledge of its experiences (personal
best, pbest) and the social knowledge of the swarm
(global best, gbest) to guide itself toward the better
position. In particular, the new position of a particle
is governed by three main control parameters; inertia
weight, personal best coefficient (cp), and global best
coefficient (cg). These processes are repeated until a
stopping criterion is met.

DE, proposed by Storn and Price in 1997 [23],
is a population-based random search technique for
global optimization over a continuous search space.
A solution in DE is represented by the D-dimension-
al vector, and the population of DE consists of NV
vectors. The key idea of DE evolutionary process
is its distinct mechanism for generating new vectors
through repeated cycles of three main operations:
mutation, crossover, and selection. The use of few
control variables; Scale Factor (F) and Cross-over
rate (Cr) constitutes DE to search efficiently and
fast. In selection operation, the re-placement of an
individual vector occurs only if the better solution
is found. As a consequence, DE is able to generate
better diverse solutions since the best solution in the
population does not exert any influence on the other
solutions in the population.

To evaluate the quality of non-dominated solu-
tions from a multi-objective optimization problem,
recently the hypervolume indicator has been utilized
extensively. The hypervolume indicator simply refers
to the hyper-volume between a given reference point
and a non-dominated front (Pareto front) [24]. Con-
sidering minimization of all objectives, the indicator
basically maps the solution point sets in the hyper-
space to the measure of the volume body which is
dominated by those point sets and bounded by a cho-
sen reference point. Sometimes, this indicator is re-
ferred to as “the size of dominated hyperspace” [25].

3. Materials and Methods

3.1 Dataset

There were a total of 37 problem instances for
the experiment, and all the instances were randomly
generated with the number of jobs/machines rang-
ing from low to high. The first seven instances were
quite small where the number of jobs and machines

were relatively low; and these small problem instanc-
es were intended to be additionally solved with the
commercial solver – LINGO. The rest of problem
instances (30 instances) are larger instances where the
number of jobs and machines were relatively high.

3.2 Mathematical Model

In this study, the PMSP-JSSDST is modelled as a
mixed integer linear programing (MILP). The prob-
lem assumptions are listed as followed.

1. All data used in the experiment such as pro-
cessing time, setup time, changeover time,
and energy consumption rate are determin-
istic.

2. Each job can be split into several sublots, and
the maximum number of sublots is deter-
mined according to the minimum machine
capacity.

3. The changeover time of jobs are sequence-
dependent.

4. Energy usage is based on electrical usage
only.

5. All jobs are equally important.
6. Preemption of jobs is not allowed.
7. Machine breakdown are not considered.

Indices, parameters, and decision variables used
in the model are defined as follows.

Indices
i, j : Job index (i, j = 1, 2, 3, …, Nn)
m : Machine index (m = 1, 2, …, Nm)
t,k : Job sublot index (t,k = 1, 2, …, Nt)

Parameters
Nn : Number of jobs
Nm : Number of machines
Nt : Number of maximum sublots of each job
PTim : Processing time of job i on machine m
SSij : Changeover time of job i to job j on

machine m
STm : Setup time of machine m
Capm : Capacity of machine m
Qi : Production quantity of job i
SRm : Energy usage for start-up machine m
Rim : Energy usage for processing job i on

machine m
G : Big number

Decision Variable
Qitm : Production quantity of job i sublot t on

machine m
Hitm : Energy usage of job i sublot t on machine m

268Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

CTitm : Completion time of job i sublot t on
machine m

Z : Production completion time or
makespan

Xitm = 1 when job i sublot t is processed on
machine m or 0 otherwise

Yitjkm = 1 when job i sublot t is immediately
processed after job j sublot k on
machine m or 0 otherwise

Wit11m = 1 when job i sublot t is the first operation
on machine m or 0 otherwise

U11jkm = 1when job j sublot k is the last operation
on machine m or 0 otherwise

This study focuses on three objectives which are
1) minimization of makespan 2) minimization of total
tardiness and 3) minimization of total energy usage.
The mathematical models are shown as the following.

Mathematical model 1: Minimization of makespan
Objective Function:

(1)

Constraints:

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

The objective function of minimizing makespan
is shown in equation (1). Equation (2) indicates that
the quantity of each job sublot cannot exceed the
machine capacity. Equation (3) ensures that the total
production quantity of any job is processed. Equa-
tion (4) states that, besides the first sublot on a ma-
chine, there must be a sublot that precedes other
sublots on the same machine. Equation (5) states that
besides the last sublot on a machine, there must be
a sublot that succeeds other sublots on the same ma-
chine. Equation (6) and (7) guarantee that each ma-
chine can operates at most one first sublot and one
last sublot. Equation (8) ensures that each job sublot
is assigned to at most one machine. Equation (9) and
(10) illustrate the relationship of completion time of
jobs on each machine. Equation (11) calculates the
makespan. Equation (12) states that the quantity of
job sublot is a non-negative. And Equation (3) speci-
fies the binary decision variables.

Mathematical model 2: Minimization of total tardi-
ness

Objective Function:

(14)

Constraints:

(15)

(16)

The objective function of minimizing total tardi-

ness of jobs is illustrated in equation (14). In addition
to constraints (2) to (13), two constraints regarding to
job tardiness are added in this model. Equation (15)
and (16) represent the tardiness calculation of each
job which cannot be negative values.

269 Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

Mathematical model 3: Minimization of total energy
usage

Objective Function

(17)

Constraints

(18)

(19)

(20)

The objective function of minimizing total ener-
gy usage is shown in equation (17). Additional con-
straints related to energy usage are added. Equation
(18) and (19) ensure the relationship of the energy
usage for job i on each machine must be greater than
or equal to energy usage for starting-up a machine
and operating a job sublot on that machine. Equation
(20) determines the total energy usage on machine m.

3.3 Tri-objective pareto-based optimization
framework

Most traditional optimization techniques have
been developed for optimizing only one single ob-
jective. When multiple objectives are considered in
the problem, most research often simplify the prob-
lem by linearly combining different objectives into
one objective with priority weights; and a solution is
obtained based on predetermined weights. The dif-
ficulties of this approach are that a solution highly
depends on given weights of a decision maker, and
different decision makers are subjected to different
perspectives.

Different from single-objective optimization, the
pareto-based optimization is a weight-free method
which aims to search for a set of non-dominated so-
lutions instead of one single solution. Consequently,
it allows decision makers to simultaneously find the
trade-offs or non-dominated solutions on the Pareto
front in a single run without prejudice.

Unfortunately, the approach of pareto-based op-
timization is more difficult and different from single
objective for several aspects. First, the mechanism to
select the best member, and, second, the way to eval-
uate the quality of solutions. Therefore, an efficient
algorithm is required in order to find a set of high
quality non-dominated solutions (Introduction). This

study proposes a tri-objective pareto-based optimiza-
tion (TOPO) framework to deal with multi-objective
(MO) problem as shown in Figure 1.

The TOPO framework begins with initializing
population in a random manner. Next, each popula-
tion member is evaluated with three different objec-
tives. Then, similar to the Elitist structure in NSGA-
II [26] and other pareto optimization frameworks,
the population experience is stored in an external
archive, called Elite group, as a set of non-dominated
solutions. In TOPO, instead of applying the sorting
procedure in Elite group to every single evolution of
a member, the sorting is only performed on the set
of newly generated population in order to identify the
group of new non-dominated solutions. This sorting
procedure applies to the group of new solutions and
current solutions in the external archive and store
only non-dominated solutions into an archive for the
Elite group. Then, Elite group screens its solutions to
eliminate inferior solutions using hypervolume indi-
cator. These processes are repeated until a stopping
criterion is met. As a consequence, the Elite group
in the archive contains only the best non-dominated
solutions found so far in the searching process.

3.4 Solution representation

To apply PSO and DE for a combinatorial prob-
lem of parallel machine problem, the solution repre-
sentation is required to transform the real number of
D-dimensional space into practical schedule. Figure
2 presents the procedures of solution representation
with encoding and decoding scheme. An example of
parallel machine with 2 jobs and 2 machines in Table
1 is used to illustrate the solution representation pro-
cedures in this study.

The solution representation procedure starts with
the encoding process which aims to represent a solu-
tion as a string of dimensions. First, the number of
possible maximum sublots of each job is determined
by dividing the production quantity of job by mini-
mum machine capacity. Then, the number of pos-
sible maximum sublots of all jobs are summarized as
No. maximum sublots. The number of dimensions
(D) is calculated as equation (21), and each value in
a dimension is initially filled with a uniform random
number in the range [0, 1].

(21)

In this example, the maximum sublots of J1 is
30/20 = 2 sublots and the maximum splits of J2 is

270Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

Figure 1. The tri-objective pareto-based optimization (TOPO) framework dealing with multi-objective (MO) problem

Figure 2. Solution representation procedures

271 Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

50/30 = 3 sublots. Thus, the number of dimensions is
5*(2+1) = 15 dimensions. Supposed that each value
in a dimension is initially generated with a uniform
random number between 0 and 1, a random key
representation of a D-Dimensional string is shown in
Figure 3.

For the decoding process, a D-dimensional string
is divided into 2 main parts. The first part denoted
the possible maximum job sublots, and the second
part is related to the selection of machines. In this
example, as shown in Figure 4, dimension 1 to 5
represents 5 maximum sublots, dimension 6 to 10
stands for machine 1, and dimension 11 to 15 stands
for machine2.

Next, the process to transform a D-Dimensional
string to a solution comprises three main stages: (1)
the determine the permutation of job sublots (2) de-

termining the machine selection and (3) the assign-
ment of each sublot to a machine. The permutation
of job sublots is performed according to the permu-
tation of n-repetition of n jobs with ascending sort
rule. The machine selection is decided using the
maximum-value rule. Then, in the assignment stage,
each job sublot is assigned to a machine accordingly.
Figure 5(a) illustrate the permutation process. Figure
5(b) show and Figure 5(c) show the assignment of
each sublots to a machine to process according to the
dimension value.

Then, the parallel machine schedule is obtained
by taking the first sublot from the sequential orders,
then the second sublot, and so on until all job quan-
tities are considered. In the process of generating a
schedule, each sublot is processed on the selected
machine in the best available position without delay-

Figure 3. Random key representation of a D-Dimensional string

Figure 4. Representation of a D-Dimensional string to an example

Parameter
Value

Job 1 Job 2

Job Quantity 30 50

Due Date 50 100

Machine1 Machine2
Machine Capacity 20 40

Machine Setup Time 5 4

Job Processing Time

Sequence Dependent Setup Time

Startup Energy [M1 M2] [0.8715 0.5987]

Energy Usage

Table 1. Data example of parallel machine with 2 jobs and 2 machines

272Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

ing other scheduled sublots. Thus, this procedure al-
ways results in an active schedule. According to this
example, the final schedule is obtained as Figure 6.

Then, three objectives are evaluated accordingly;
Makespan = 106, Tardiness = 16, and Energy usage
= 21.3132.

It is worth noting that although the proposed de-
coding method always generate a feasible and active
schedule, there are some limitations. In the decoding
stage of machine selection, each job sublot is assigned
to a machine according to the maximum-value rule,
which often results in diversity of solutions without
any bias. However, there are also disadvantages with
this rule because the machine assignment is pre-de-
termined without considering the current scheduled
sublots. In addition, the schedule is not dynamically

generated given the multi-objectives. As a conse-
quence, this method sometimes may not result in
generating optimal schedule or it may miss a chance
to obtain better schedule.

4. Experimental Results

4.1 Parameter settings of metaheuristics and
test instances

Generally, the settings and adjustments of crucial
parameters of any metaheuristic algorithms most like-
ly affect its optimization performances, more or less.
Setting appropriate parameters could also decide
how well an algorithm performs and also how fast the

Figure 5. Decoding procedures to transform D-dimensional solution

273 Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

solutions could converge. The performance of the
proposed methods was tested using 37 randomly gen-
erated test instances. The problem sizes are classified
as small, medium, and large depending on the maxi-
mum number of possible sublots. The parameters of
each problem size are shown in Table 2.

In this study, parameter optimization processes
were performed for both DE and PSO algorithms.

However, there was one common parameter not di-
rectly related to the core models in both algorithms
which was the “PercentRandom” – the percentage of
iterations that use random vector members to evolve
a predecessor vector (otherwise it would use a vec-
tor from the elite group.). Thus, for running the DE
algorithm, there were three parameter sets: (1) Fmax/
Fmin (2) CRmax/CRmin, and (3) PercentRandom

Figure 6. Scheduling of jobs

Parameters
Problem Size

Small Medium Large
Sublot size < 30 30 – 220 > 220

Nn 2 - 4 4 – 25 25 - 30

Nm 2 - 3 3 - 20 20 - 35

Capm 10, 20, 40 10, 20, 40, 60 10, 20, 40, 60

PTim U[10, 50] U[10, 50] U[10, 50]

SSij U[0.1(PT), 0.25(PT)] U[0.1(PT), 0.25(PT)] U[0.1(PT), 0.25(PT)]

STm U[0.1(PT), 0.15(PT)] U[0.1(PT), 0.15(PT)] U[0.1(PT), 0.15(PT)]

SRm U[2, 2.5] U[2, 2.5] U[2, 2.5]

Rim U[4, 35] U[4, 35] U[4, 35]

Table 2. Parameters for test instances

274Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

which were altered in experiment trials during the
parameter optimization process. And each param-
eter set comprises 3 values as shown in Table 3. As
such, for each data instance, there were a total of 27
trial runs (equal to the number of parameter combi-
nations i.e. 33). However, those trial runs were only
applied to the problem with medium size: J20M10
(number of jobs =20, number of machines =10).
Then, a parameter combination yielding the best
optimization performance was selected for all of the
problem instances in the experimental runs. And for
PSO algorithm, there were also three parameter sets:
(1) wMax/wMin (2) TopEP/BotEP, and (3) Percent-
Random as shown in Table 4. And the procedure to
find the best parameter combination was similar to
that of DE algorithm. Those methods for parameter
optimization resulted in parameter selection as fol-
lows: for DE| Fmax/Fmin = 1.5/0.5|CRmax/CRmin
= 0.5/0.1|PercentRandom = 60, for PSO| wMax/
wMin = 0.4/0.9|TopEP/BotEP = 0.1/0.2| Percent-
Random = 60. It is noted that these selected param-
eters are underlined in both Table 3 and Table 4.

For both algorithms in each run of a problem in-
stance, the population/swarm sizes (DE utilizes pop-
ulation size while PSO uses swarm size) depended
on how large a problem was; note that a problem
size equals to the number of maximum job sublots.
For examples, a small problem (sublot size <30)
matches with the population/swarm size of 200, and
a medium problem (30≤ sublot size ≤220) matches
with the population/swarm size of 500. However,

the number of iterations remain constant regardless
of the problem size; and both algorithms employed
the same encoding/decoding procedure regardless
of the problem sizes. Tables 5 shows the population
or swarm size and number of iterations used for dif-
ferent problem sizes in the numerical experiment of
metaheuristics. It is noted that these settings were em-
pirically determined from preliminary experiments.

4.2 Computational results

For this research, the metaheuristics algorithms
were implemented by the Python programming
language [27] under PyCharm IDE [28] version
2020.3.1 in Ubuntu operating system version 20.04.5
LTS. The optimization application ran on the plat-
form Intel® CoreTM i7-10750H CPU 2.60 GHz
with 32 GB of RAM. The performance comparisons
between DE and PSO algorithms were evaluated us-
ing the hypervolume indicator provided by the Py-
thon library pygmo version 2.18 [29]. There were a
total of 37 instances in which the first seven instances
were solved with DE and PSO algorithms as well as
the solver software – LINGO; and the other 30 data
instances were solved with only DE and PSO algo-
rithms. LINGO is an optimization tool designed to
solve both linear and non-linear models which aims
to find the exact solution for each optimization prob-
lem. However, for some problems that are quite
large, LINGO might take a long time to determine
the solution (in some cases, LINGO could take the

Parameter Name Value 1 Value 2 Value 3
Fmax/Fmin 2/1 2.5/1.5 1.5/0.5

CRmax/CRmin 0.9/0.1 0.9/0.5 0.5/0.1

PercentRandom 20 40 60

Table 3. Parameter testing for DE algorithm

Parameter Name Value 1 Value 2 Value 3
wMax/wMin 0.1/0.4 0.25/0.7 0.4/0.9

TopEP/BotEP 0.1/0.2 0.2/0.3 0.3/0.4

PercentRandom 20 40 60

Table 4. Parameter testing for PSO algorithm

Problem Size Sublot Size Population/Swarm Size Iteration
Small < 30 200 1000

Medium 30 – 220 500 1000

Large > 220 1000 1000

Table 5. Population/Swarm size and number of iterations for different problem sizes in the numerical experiment of DE/PSO

275 Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

infinite time since a problem is too large). For each
data instance, the hypervolume indicator values were
computed using non-dominated solutions obtained
from both DE and PSO algorithms; and the refer-
ence point for the indicator was calculated by adding
ten to the maximum value of each objective across
both results. Note that each data instance has the
same reference point. In addition, the higher value of
hypervolume indicator, the better of non-dominated
solutions quality. Table 7 shows the comparisons of
hypervolume indicators for all instances solved by
DE and PSO algorithms, and also percent difference
(PD) of hypervolume values between them. The for-
mula for PD is given by equation 22.

(22)

From the results in Table 7, the performances of
DE, PSO and LINGO are identical in the first three
problem instances where the problems are small (Nn
= 2, Nm ≤ 3) which means both metaheuristics al-
gorithms could find the solutions similar to the exact
optimized solutions obtained from LINGO. When
the problems get larger e.g. instance 4, 5 and 6 (3
≤ Nn ≤ 4, Nm ≤ 3), both algorithms almost reach
the exact optimized solutions in all three objectives
except the energy usage where LINGO needed more
than 12 hours to achieve the exact optimized results
for instance 4 and 5 while it could not find the solu-
tion of energy usage for instance 6 at all. Lastly, for
instance 7 (Nn = 4, Nm = 3), both metaheuristics
algorithms almost achieve the exact optimized so-
lutions of makespan and even perform better than
LINGO does in the solution of tardiness; however,
LINGO could not obtain the exact optimized solu-
tion of energy usage.

For problem instances in which the Nn ≥ 4 and
Nm ≥ 3, there are only performances results from
DE and PSO (problems are simply too large for
LINGO); and the total number of instances in this
case is 30. Note that the largest instance is D25 where
Nj = 50 and Nm = 35. From the results in Table
7, based on the hypervolume indicator values (HV)
in all of the instances from D1 to D30, the perfor-
mances of DE are clearly superior to those of PSO
with the average PD of 45.22%. Table 8 presents the
best optimization results for DE and PSO in each in-
stance (D1 – D30) including 3 objectives: (1) makes-
pan (2) tardiness and (3) energy usage. Note that each
objective value for each instance is the optimal value
chosen from a group of non-dominate solutions
(pareto front). The results from Table 8 show that
almost all the best makespan values obtained from
DE (except in the instances D2 and D5) are better
(lower) than those from PSO. Moreover, all the best
tardiness values from DE in two instances (D2 and
D3) are superior to those from PSO (the rest are all
zeros). And lastly, most of the best energy usage val-
ues gained from DE are better than those from PSO.
This indicate that DE is capable of finding greater
non-dominated solutions or better pareto front than
PSO. Therefore, DE is an alternate effective algo-
rithm for solving this complex parallel machine prob-
lem i.e. PMSP-JSSDST.

5. Conclusion

This research utilized and compared two meta-
heuristics algorithms, namely DE and PSO algo-
rithms, to solve the PMSP-SDST for three optimal
objectives: makespan, tardiness and energy usage.
In PMSP-SDST, job sizes were not required to be

Instance Nn Nm
LINGO DE PSO

MS TD EN MS TD EN MS TD EN
1 2 2 106 16 18.59 106 16 18.59 106 16 18.59

2 2 3 36 11 122.67 36 11 122.67 36 11 122.67

3 2 3 14 2 67.35 14 2 67.35 14 2 67.35

4 3 3 73 81 56.10* 73 81 67.35 73 81 67.35

5 3 2 88 18 106.75* 88 18 116.41 88 18 116.41

6 4 2 77 44 N/A 77 44 44.23 77 44 44.23

7 4 3 95* 164* N/A 99 163 32.53 99 163 32.53

Note. *LINGO takes more than 12 hours to obtain the results, the reported value is lower bound value. Nn = Number of jobs, Nm = Number of
machines, MS = Makespan, TD = Tardiness and EN = Energy Usage.

Table 6. Experimental results of DE compared with those of PSO and LINGO for seven instances

276Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

Instance Nn Nm
DE PSO

MS TD EN MS TD EN
D1 4 3 111 0 232.28 112 0 232.28

D2 7 4 136 192 366.67 132 202 364.46

D3 10 4 152 310 408.99 160 319 417.23

D4 10 5 154 0 449.98 156 0 442.04

D5 12 5 74 0 220.37 74 0 219.36

D6 20 10 231 0 1368.75 241 0 1390.55

D7 20 15 144 0 1182.53 151 0 1196.46

D8 25 10 225 0 1443.96 236 0 1437.83

D9 25 15 165 0 1314.94 170 0 1343.37

D10 25 20 167 0 1835.07 166 0 1865.90

D11 30 10 294 0 1809.74 304 0 1777.12

D12 30 15 191 0 1571.79 201 0 1652.29

Table 8. The best value of each objective obtained from DE and PSO

Instance Nn Nm HV: DE HV: PSO PD (%)

D1 4 3 9122.07 8904.82 2.44

D2 7 4 2124880.60 1911632.91 11.16

D3 10 4 7324427.00 6069451.08 20.68

D4 10 5 4274798.72 3359147.28 27.26

D5 12 5 39099.59 34936.19 11.92

D6 20 10 9259830.10 6160254.80 50.32

D7 20 15 173382.40 113990.30 52.1

D8 25 10 3992856.98 3233869.86 23.47

D9 25 15 191475.50 140014.29 36.75

D10 25 20 175291.55 132414.36 32.38

D11 30 10 31549000.09 30146900.83 4.65

D12 30 15 550634.97 331342.08 66.18

D13 30 19 259763.74 139029.64 86.84

D14 30 25 200260.48 116080.81 72.52

D15 35 10 406045.03 310187.81 30.9

D16 35 15 476594.33 386708.57 23.24

D17 35 20 155061.35 61177.38 153.46

D18 35 25 291461.25 171926.38 69.53

D19 35 30 219609.99 136495.68 60.89

D20 40 10 487905.57 335144.72 45.58

D21 40 15 308834.73 179700.49 71.86

D22 40 19 5571727.61 4352713.57 28.01

D23 40 25 418672.61 311746.46 34.3

D24 40 30 392254.98 265819.21 47.56

D25 50 35 335296.37 186512.26 79.77

D26 50 30 366741.55 257288.49 42.54

D27 50 25 480517.83 308038.04 55.99

D28 50 20 1154778.33 921519.80 25.31

D29 50 15 891359.94 663957.78 34.25

D30 50 10 157507.58 101743.79 54.81

Average 45.22

Table 7. Hypervolume indicator values (HV) and percent difference (PD) for all instances solved by DE and PSO algorithms

277 Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

equal and jobs could be split into small lots such that
they can be allocated to vacant machines. Essential
parameters of each machine included setup times,
sequence dependent setup times, energy usage and
energy consumption at machine startup time. In par-
ticular, the startup energy usage was included in the
machine parameters to dissuade the utilization of a
machine because of high energy cost at the startup
time, not to mention manpower and machine dete-
rioration costs.

In order to apply DE and PSO to the problem,
solution representation with encoding and decod-
ing procedures were designed to obtain feasible
solutions. Moreover, the parameter optimization
procedure was implemented for both DE and PSO
algorithms in order to obtain appropriate values of
critical parameters. Both metaheuristics algorithms
were verified for their performances by comparing
their results with the commercial solver – LINGO
– in the case of small problem instances, in which
the results demonstrated that both algorithms, DE
and PSO, had almost identical performances com-
pared to those of the LINGO. In the case of large
problem instances, using the hypervolume indicators
computed from the pareto front to compare optimi-
zation performances of multi-objective problems, the
results showed that DE clearly outperformed PSO in
all the problem instances.

For real practice in the production line, the pro-
posed algorithm can be integrated into the existing
scheduling system to generate an efficient schedule.

The findings of this study can help in developing vi-
sual tool to continuously monitor schedule status. In
addition, it helps production planner to make deci-
sion corresponding to different objectives such that
the organization’s goals are met. The ongoing re-
search have continued to investigate ways to improve
the algorithm performance, for example, hybridiza-
tion with other metaheuristics and adaptive search
features. Further studies are recommended to apply
the proposed algorithm for a wider range of schedul-
ing or related problems and include other realistic
constraints into the problem.

Acknowledgments

The authors would like to acknowledge Mae Fah
Luang University and Chiang Mai University for a
partial financial sponsorship and their facility support
in this research.

Funding

This work was supported by the Mae Fah Luang
University [grant agreement number: 621B01019].

Conflict of Interest

The authors declare that they have no conflict of
interest.

D13 30 19 174 0 1754.32 184 0 1811.45

D14 30 25 156 0 1983.32 167 0 2038.75

D15 35 10 230 0 1549.67 253 0 1578.39

D16 35 15 226 0 1838.57 238 0 1914.65

D17 35 20 215 0 2421.24 225 0 2427.16

D18 35 25 180 0 2461.45 190 0 2537.12

D19 35 30 163 0 2491.35 165 0 2558.65

D20 40 10 352 0 2370.89 368 0 2399.24

D21 40 15 214 0 1847.73 225 0 1919.14

D22 40 19 244 0 2650.46 253 0 2736.70

D23 40 25 200 0 2690.59 207 0 2736.57

D24 40 30 205 0 2974.02 207 0 3034.25

D25 50 35 200 0 3667.09 214 0 3686.99

D26 50 30 203 0 2979.60 209 0 3029.99

D27 50 25 201 0 2676.76 210 0 2737.31

D28 50 20 256 0 2849.22 268 0 2882.83

D29 50 15 262 0 2257.76 263 0 2299.48

D30 50 10 340 0 2249.82 349 0 2251.71

Note. Nn = Number of jobs, Nm = Number of machines, MS = Makespan, TD = Tardiness and EN = Energy Usage.

278Wisittipanich and Wisittipanit

International Journal of Industrial Engineering and Management Vol 15 No 4 (2024)

References
[1] T.C.E. Cheng, and C.C.S. Sin, "A state-of-the-art review of

parallel-machine scheduling research," European Journal
of Operational Research, vol. 47, no. 3, pp. 271–579, Aug.
1990, doi: 10.1016/0377-2217(90)90215-W.

[2] J. Behnamian, M. Zandieh, and S.M.T.F. Ghomi, "Parallel-
machine scheduling problems with sequence-dependent
setup times using an ACO, SA and VNS hybrid algorithm,"
Expert Systems with Applications, vol. 36, no. 6, pp. 9637–
9644, Aug. 2009, doi:10.1016/j.eswa.2008.10.007.

[3] I. Saricicek, and C. Celik, "Two meta-heuristics for
parallel machine scheduling with job splitting to minimize
total tardiness, SA and VNS hybrid algorithm," Applied
Mathematical Modelling, vol. 35, no. 8, pp. 4117–4126,
Aug. 2011, doi: 10.1016/j.apm.2011.02.035.

[4] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler,
"Hypervolume-based multiobjective optimization:
Theoretical foundations and practical implications,"
Theoretical Computer Science, vol. 425, pp. 75–103, Mar.
2012, doi: 10.1016/j.tcs.2011.03.012.

[5] LINGO - Optimization Modeling Software for Linear,
Nonlinear, and Integer Programming. (2021). LINDO
Systems. Available: https://www.lindo.com

[6] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler,
"Hypervolume-based multiobjective optimization:
Theoretical foundations and practical implications,"
Theoretical Computer Science, vol. 425, no. 30, pp. 75–
103, Mar. 2012, doi: 10.1016/j.tcs.2011.03.012.

[7] B.N. Srikar, and S. Ghosh, "A MILP model for the
n-job, M-stage flowshop with sequence dependent
set-up times," International Journal of Production
Research, vol. 24, no. 6, pp. 1459-1474, Oct. 2007, doi:
10.1080/00207548608919815.

[8] F. Yalaoui, and C. Chu, "An efficient heuristic approach for
parallel machine scheduling with job splitting and sequence-
dependent setup times," IIE Transactions, vol. 35, no. 2, pp.
183-190, Oct. 2010, doi: 10.1080/07408170304382.

[9] M.L. Pinedo, "Advanced Single Machine Models, " in
Scheduling: Theory, Algorithms, and Systems, fifth edition.
New York, USA: Springer, 2016, pp. 69-77.

[10] S.A. Kravchenko, and F. Werner, "Parallel machine
problems with equal processing times: a survey," Journal of
Scheduling, vol. 14, pp. 435-444, Mar. 2011, doi: 10.1007/
s10951-011-0231-3.

[11] K. Sethanan, W. Wisittipanich, N. Wisittipanit, K. Nitisiri,
and K. Moonsri, "Integrating scheduling with optimal sublot
for parallel machine with job splitting and dependent
setup times," Computer & Industrial Engineering, vol. 137,
106095, Nov. 2019, doi: 10.1016/j.cie.2019.106095.

[12] A. Kurt, and F.C. Cetinkaya, "Unrelated parallel machine
scheduling under machine availability and eligibility
constraints to minimize the makespan of non-resumable
jobs," International Journal of Industrial Engineering and
Management, vol. 15, no. 1, pp. 18-33, Mar. 2024, doi:
10.24867/IJIEM-2024-1-345.

[13] S.A. Torabi, N. Sahebjamnia, S.A. Mansouri, and M.A.
Bajestani, "A particle swarm optimization for a fuzzy multi-
objective unrelated parallel machines scheduling problem,"
Applied Soft Computing Journal, vol. 13, no. 12, pp. 4750-
4762, Dec. 2013, doi: 10.1016/j.asoc.2013.07.029.

[14] K.T. Fang, and B.M.T. Lin, "Parallel-machine scheduling
to minimize tardiness penalty and power cost," Computer
& Industrial Engineering, vol. 64, no. 1, pp. 224-234, Jan.
2013, doi: 10.1016/j.cie.2012.10.002.

[15] P. Liang, H.D. Yang, G.S. Liu, and J.H. Guo, "An ant
optimization model for unrelated parallel machine
scheduling with energy consumption and total tardiness,"

Mathematical Problems in Engineering, vol. 2015, 907034,
Aug. 2015, doi: 10.1155/2015/907034.

[16] W. Wisittipanich, and V. Kachitvichyanukul, "Mutation
strategies toward Pareto front for multi-objective differential
evolution algorithm," International Journal of Operational
Research, vol. 19, no. 3, pp. 315-337, Jun. 2014, doi:
10.1504/IJOR.2014.059507.

[17] K. Mihaly and G. Kulcsar, "A new many-objective hybrid
method to solve scheduling problems," International Journal
of Industrial Engineering and Management, vol. 14, no. 4,
pp. 326-335, Dec. 2023, doi: 10.24867/IJIEM-2023-4-342.

[18] D. Li, J. Wang, R. Qiang, and R. Chiong, "A hybrid differential
evolution algorithm for parallel machine scheduling of lace
dyeing considering colour families, sequence-dependent
setup and machine eligibility," International Journal of
Production Research, vol. 59, no. 9, pp. 2722-2738, Mar.
2020, doi: 10.1080/00207543.2020.1740341.

[19] W.L. Wang, H.Y. Wang, Y.W. Zhao, L.P. Zhang, and
X.L. Xu, "Parallel machine scheduling with splitting jobs
by a hybrid differential evolution algorithm,". Computers &
Operations Research, vol. 40, no. 5, pp. 1196-1206, May
2013, doi: 10.1016/j.cor.2012.12.007.

[20] Q. Niu, T. Zhou, and L. Wang, "A hybrid particle swarm
optimization for parallel machine total tardiness scheduling,"
International Journal of Advance Manufacturing
Technology, vol. 49, no. 5, pp. 723-739, Jul. 2010, doi:
10.1007/s00170-009-2426-8.

[21] I. Alharkan, M. Saleh, M.A. Ghaleb, H. Kaid, A. Farhan,
and A. Almarfadi, "Tabu search and particle swarm
optimization algorithms for two identical parallel machines
scheduling problem with a single server," Journal of King
Saud University – Engineering Sciences, vol. 32, no. 5, pp.
330-338, Jul. 2020, doi: 10.1016/j.jksues.2019.03.006.

[22] J. Kennedy, and R. Eberhart, "Partical swarm optimization,
" in Proc. of ICNN'95 - International Conference on Neural
Networks, Perth, WA, Australia, 1995, pp. 1942-1948 vol.
4, doi: 10.1109/ICNN.1995.488968.

[23] R. Storn, and K. Price, "Differential Evolution – A Simple and
Efficient Heuristic for global Optimization over Continuous
Spaces," Journal of Global Optimization, vol. 11, no. 4, pp.
341-359, Jan. 1997, doi: 10.1023/A:1008202821328.

[24] A.P. Guerreiro, C.M. Fonseca, and L. Paquete, "The
hypervolume indicator: computational problems and
algorithms," ACM Computing Surveys, vol. 54, no. 6, pp.
1-42, Jul. 2021, doi: 10.1145/3453474.

[25] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler,
"Hypervolume-based multiobjective optimization:
theoretical foundations and practical implications,"
Theoretical Computer Science, vol. 425, pp. 75-103, Mar.
2012, doi: 10.1016/j.tcs.2011.03.012.

[26] Y. Yusoff, M.S. Ngadima, and A.M. Zain, "Overview of
NSGA-II for Optimizing Machining Process Parameters,"
Procedia Engineering, vol. 15, pp. 3978-3983, Dec. 2011,
doi: 10.1016/j.proeng.2011.08.745.

[27] G.V. Rossum, "Python tutorial, Technical Report CS-
R9526," in Amsterdam: Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, Netherlands, 1995.

[28] PyCharm. (2020). JetBrains. Available: Available: http://
jetbrains.com/pycharm

[29] F. Biscani, and D. Izzo, "A parallel global multiobjective
framework for optimization: pagmo," Journal of Open
Source Software, vol. 5, no. 53, pp. 2338-2350, Sep. 2020,
doi: 10.21105/joss.02338.

