

International Journal of Industrial Engineering and Management

Criticality evaluation to support maintenance management of manufacturing systems

I.S. Lopes, M.C. Figueiredo, V. Sá

ALGORITMI Centre, Department of Production and Systems, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal

References

- Fernandez, O., Labib, A. W., Walmsley, R. and Petty, D. J. (2003), "A decision support maintenance management system: Development and implementation," International Journal of Quality & Reliability Management, Vol. 20 No. 8, pp. 965–979.
- [2] Ab-samat, H., Jeikumar, L. N., Basri, E. I., Harun, N. A and Kamaruddin, S. (2012), "Effective Preventive Maintenance Scheduling: A Case Study" in Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management, Istanbul, pp. 1249–1257.
- [3] Xiao, L., Song, S., Chen, X. and Coit, D. W. (2016), "Joint optimization of production scheduling and machine group preventive maintenance," Reliability Engineering and System Safety, Vol. 146, pp. 68–78.
- [4] Manzini, R., Accorsi, R., Cennerazzo, T., Ferrari, E. and Maranesi, F. (2015), "The scheduling of maintenance. A resource-constraints mixed integer linear programming model", Computers & Industrial Engineering, Vol. 87, pp. 561–568.
- [5] Hijes, F. and Cartagena, J. (2006), "Maintenance strategy based on a multicriterion classification of equipments," Reliability Engineering & System Safety, Vol. 91, No. 4, pp. 444-451.
- [6] Khanlari, A., Mohammadi , K., Sohrabi, B. (2008), "Prioritizing equipments for preventive maintenance (PM) activities using fuzzy rules," Computers and Industrial Engineering, Vol. 54, pp. 169-184.
- [7] Stadnicka, D., Antosz, K. and Ratnayake, R. M. C. (2014), "Development of an empirical formula for machine classification: Prioritization of maintenance tasks," Safety Science, Vol. 63, pp. 34–41.
- [8] Rastegari, A. and Mobin, M. (2016), "Maintenance decision making, supported by computerized maintenance management system," In 2016 Annual Reliability and Maintainability Symposium (RAMS), IEEE, pp.1-8.
- [9] Guo, Y.-Z. and Dong, J. (1997), "The application of fuzzy clustering analysis in process equipment importance classification," International Journal of Pressure Vessels and Piping, Vol. 71, pp. 175–179.
- [10] Jaderi, F., Sa'idi, E., Anvaripour, B. and Nabhani, N. (2012), "Criticality analysis for assets priority setting of Abadan Oil Refinery using AHP and Delphi Techniques," International Journal of Engineering and Innovative Technology, Vol. 2 No. 6, pp. 48–53.
- [11] Azadeh, A., Ghaderi, S.F., Ebrahimipour, V. (2007), "An integrated PCA DEA framework for assessment and ranking of manufacturing systems based on equipment performance," Engineering Computations, Vol. 24, No. 4, pp.347-372.
- [12] Taghipour, S., Banjevic, D. and Jardine, A. (2010), "Prioritization of medical equipment for maintenance decisions," Journal of the Operational Research Society, pp.1–22.
- [13] Campbell, J. D. and Jardine, A. (2001), Maintenance Excellence: Optimizing Equipment Life-Cycle Decisions, CRC Press, New York.
- [14] Bevilacqua, M. and Braglia, M. (2000), "The analytic hierarchy process applied to maintenance strategy selection," Reliability Engineering & System Safety, Vol. 70 No. 1, pp. 71–83.
- [15] Labib, A. W. (2004), "A decision analysis model for maintenance policy selection using a CMMS," Journal of Quality in Maintenance Engineering, Vol. 10, No. 3, pp. 191–202.
- [16] Shahin, A. and Attarpour, M. R. (2011), "Developing decision making grid for maintenance policy making based on estimated range of overall equipment effectiveness," Modern Applied Science, Vol. 5 No. 6, pp. 86–97.
- [17] Velasquez, M. and Hester, P. T. (2013), "An Analysis of Multi-Criteria Decision Making Methods," International Journal of Operational Research, Vol. 10, No. 2, pp. 56–66.
- [18] Li, L., Ni, J. (2009), "Short-term decision support system for maintenance task prioritization," International Journal of Production Economics, Vol. 121, pp. 195-202.
- [19] Saleh, N., Sharawi, A., Elwahed, M., Petti, A., Puppato, D., and Balestra, G. (2015), "Preventive maintenance prioritization index of medical equipment using quality function deployment," IEEE Journal of Biomedical and Health Informatics, Vol. 19, No. 3, pp. 1029-1035.

- [20] Singh, R. K. and Kulkarni, M. (2013), "Criticality analysis of power-plant equipments using the Analytic Hierarchy Process," International Journal of Industrial Engineering & Technology, Vol. 3, No. 4, pp. 1-14.
- [21] Qi, H.S., Alzaabi, R.N., Wood, A.S. and Jani, M. (2013),"A fuzzy criticality assessment system of process equipment for optimised maintenance management," International Journal of Computer Integrated Manufacturing, Vol. 28, No. 1, pp. 112-125.
- [22] Jagtap, H. P. and Bewoor, A. K. (2017), "Use of Analytic Hierarchy Process methodology for criticality Analysis of thermal Power plant equipment" in Materials Today: proceedings, Vol. 4, pp 1927-1936.
- [23] Márquez, A. C., León, P. M., Fernández, J.F. G., Márquez, C. P. and Campos, M. L. (2009), "The maintenance management framework: A practical view to maintenance management," Journal of Quality in Maintenance Engineering, Vol. 15, No. 2, pp.167-178.
- [24] Guo, L., Gao, J., Yang, J. and Kang, J. (2009), "Criticality evaluation of petrochemical equipment based on fuzzy comprehensive evaluation and a BP neural network," Journal of Loss Prevention in the Process Industries, Vol. 22 No. 4, pp. 469-476.
- [25] Faisall, M. and Sharawi, A, (2015), "Prioritize Medical Equipment Replacement Using Analytical Hierarchy Process", IOSR Journal of Electrical and Electronics Engineering, Vol. 10, No. 3, pp. 55-63.
- [26] Peeters, J., Basten, R. and Ting, T. (2018), "Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner," Reliability Engineering & System Safety, Vol. 172, pp. 36-44.
- [27] Roda, I., Macchi, M., Fumagalli, L., Viveros, P. (2014), "A review of multi-criteria classification of spare parts: From literature analysis to industrial evidences," Journal of Manufacturing Technology Management, Vol. 25, No. 4, pp. 528–549.
- [28] Triantaphyllou, E. and Mann, S. H. (1995), "Using the Analytic Hierarchy Process for Decision Making in Engineering Applications: Some Challenges," International Journal of Industrial Engineering: Theory, Applications and Practice, Vol. 2, No. 1, pp. 35–44.
- [29] Saaty, T. L. (2008), "Decision making with the analytic hierarchy process," International Journal of Services Sciences, Vol. 1 No. 1, pp. 83–98.
- [30] Gass, S. I. and Rapcsák, T. (2004), "Singular value decomposition in AHP," European Journal of Operational Research, Vol. 154 No. 3, pp. 573–584.
- [31] Subramanian, N. and Ramanathan, R. (2012), "A review of applications of Analytic Hierarchy Process in operations management," International Journal of Production Economics, Vol. 138, No. 2, pp. 215–241.
- [32] Ahmad, R and Kamaruddin, S. (2012), "An overview of time-based and condition-based maintenance in industrial application," Computers & Industrial Engineering, Vol. 63, No. 1, pp. 135–149.
- [33] Saaty, T. L. (1980), The Analytic Hierarchy Process, McGraw-Hill, New York.
- [34] Muchiri, P., Pintelon, L., Gelders, L and Martin, H. (2011), Development of maintenance function performance measurement framework and indicators, International Journal of Production Economics, Vol. 131, No. 1, pp. 295-302.