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Manufacturing processes consume substantial thermal energy, yet siloed management ap-
proaches cannot exploit facility-wide synergies. This study develops and validates an inte-
grated Digital Twin (DT) that fuses physics-based thermal models with machine-learning

forecasts and multi-objective optimization to coordinate process heat, waste-heat recovery,
thermal storage, and on-site renewables in real-time. Deployed across four heterogeneous
manufacturing facilities, the D'T" generated operator-ready knee-point recommendations that
balanced energy use, operating cost, and emissions under changing production and weather
conditions. Across sites, deployment produced substantial, sustained gains in thermal-energy
efficiency and marked reductions in carbon mtensity (approximately 27% higher efficiency
and about one-third lower emissions in aggregate), demonstrating that system-level orchestra-
tion outperforms isolated component upgrades. Novelty lies in plant-scale, real-time co-opti-
mization of process heat, waste-heat recovery, thermal storage, and on-site renewables using a
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1. Introduction substantial energy consumption, accounting for ap-
proximately 409 of industrial energy use in thermal
processes alone [1]. This significant energy demand
The global manufacturing sector is a corner-  presents a dual challenge: it constitutes a major op-
stone of economic output, yet it is characterized by  erational expenditure for enterprises and contributes
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heavily to global greenhouse gas emissions [2], [3]. In
an era of increasing energy cost volatility and pressing
environmental mandates, enhancing Thermal Ener-
gy Efficiency (T'EE) 1s not merely an operational goal
but a strategic imperative for achieving sustainable
and economically competitive manufacturing [4].
The pursuit of energy efficiency aligns with national
and international sustainability frameworks, such as
Saudi Arabia's Vision 2030, which emphasizes in-
dustrial diversification, resource optimization, and
the development of sustainable production capaci-
ties in industrial hubs like Jubail and Yanbu [5], [6].
Consequently, the development and deployment of
advanced methodologies for comprehensive energy
management are critical for the next stage of indus-
trial evolution, often termed Industry 5.0, which pri-
oritizes sustainability and resilience [7].

Historically, thermal management in manufac-
turing has been approached through incremental
improvements and siloed control strategies [8], [9].
These methods often focus on the optimization of
idividual components, such as improving the effi-
ciency of a single heat exchanger or insulating a spe-
cific process, without a holistic view of system-wide
energy flows [10]. While beneficial, this component-
level approach fails to capture the significant efficien-
cy gains achievable through the dynamic integration
of interconnected thermal systems [11]. Key strate-
gies have included Waste Heat Recovery (WHR),
where heat from exhaust gases or process streams 1s
captured and reused, and the integration of renew-
able energy sources [12], [13]. However, the variable
and intermittent nature of both waste heat produc-
tion and renewable energy generation presents a
complex control challenge that conventional systems
struggle to manage optimally [14]. The advent of In-
dustry 4.0 has introduced digital technologies that
offer a paradigm shift in industrial process manage-
ment [15]. Among these, Digital Twin (DT) technol-
ogy has emerged as a particularly promising enabler
for advanced energy optimization [16]. A DT is a
dynamic, high-fidelity virtual model of a physical as-
set or system that 1s continuously updated with real-
time data from its physical counterpart [17]-[19]. By
integrating Internet of Things (IoT) sensors, phys-
ics-based models, and Machine Learning (ML) al-
gorithms, a DT can simulate, predict, and optimize
the performance of the physical system in real-time
[20]-[22]. Recent literature highlights the potential of
DT to enhance energy elliciency by providing a ho-
listic view of factory operations, enabling predictive
maintenance, and optimizing resource consumption

(23], [24].

Beyond foundational DT expositions, several
recent surveys and systematic reviews (2023-2025)
sharpen both the promise and the open challenges
of energy-oriented DT's. Aghazadeh Ardebili et al.
[25] synthesized digital twins of smart energy systems,
emphasizing interoperability, computational burden,
and real-time coordination across heterogeneous as-
sets. Al Zami et al. [17] provided an imdustry-wide
survey that highlights data fusion, runtime fidelity,
and lifecycle management as key bottlenecks for scal-
able deployments. Complementing these field-level
perspectives, Yu et al. [16] classified energy DT ap-
proaches for industrial energy management and de-
tail challenge areas that persist in practice. Together
with manufacturing-focused discussions of DTs for
renewable utilization and efficiency [24] and the
largely diagnostic orientation of predictive-mainte-
nance deployments [23], this body of work converges
on a critical gap: rigorously validated, plant-scale DT's
that co-optimize process heat, waste-heat recovery,
thermal storage, and on-site renewables under multi-
objective criteria and uncertainty—precisely the scope
addressed i this study.

A review of current methodologies reveals a clear
progression in thermal management strategies yet
also exposes persistent limitations. Table 1 summa-
rizes recent manufacturing energy-management ap-
proaches—their methodologies, primary focus, and
limitations—to contextualize this study and identify
the gaps addressed.

Despite the advancements highlighted, a signifi-
cant gap persists in the literature and in industrial
practice [31]. While many studies propose concep-
tual frameworks or focus on optimizing 1solated as-
pects of energy consumption, there is a lack of re-
search demonstrating a comprehensive, integrated
DT system for real-ime thermal energy management
across multiple, interconnected manufacturing pro-
cesses [25]. Previous approaches have treated WHR,
renewable energy integration, and process-specific
thermal management as separate challenges. This
fragmented view prevents the exploitation of syner-
gies between these systems. For istance, waste heat
from one process could be stored and used to sup-
plement a solar thermal system during periods of low
solar 1rradiance, but this requires integrated sensing,
prediction, and control beyond non-holistic systems
[32]. This study’s novelty 1s threefold: (1) a validated,
plant-scale DT that co-optimizes process heat, multi-
source waste-heat recovery, thermal storage, and on-
site renewables 1 real-time via a hybrid physics-ML
framework with NSGA-II knee-point recommenda-
tions; (i) uncertainty-aware control that propagates
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Table 1. Comparative analysis of recent literature in manufacturing energy management

Study/Approach Methodology

Primary Focus

|dentified Limitations

Conventional WHR
Systems [26]

Physics-based; use of heat
exchangers, Organic Rankine
Cycles (ORC).

Process-Specific
Optimization [27]

Multi-objective algorithms
for specific tasks (e.g.,

scheduling).
Early DT for DT for real-time monitoring
Monitoring [28] and visualization of energy

use.

Conceptual DT
Frameworks [29]

Proposing architectures for
integrating DT with energy
systems.

Al-driven Predictive
Maintenance [30]

ML models to predict
equipment failure and energy

Capture and reuse of
process heat from a

single or limited source.

Minimizing energy for
a single production line
or process.

Gaining visibility into
energy consumption
patterns.

Theoretical integration
of data platforms and
optimization models.

Improving uptime
and component-level

Static design; inability to adapt to dynamic
operational changes; siloed application misses
system-wide opportunities.

Lack of integration with other energy systems (e.g.,
renewables, other processes); localized optimization
can lead to suboptimal global performance.

Primarily diagnostic; lacks advanced predictive and
prescriptive (optimizing) capabilities; limited to
monitoring rather than active, automated control.

Lack of real-world implementation and validation
at scale; challenges of data integration and model
fidelity not fully addressed.

Focus is on reliability rather than holistic energy
optimization; does not typically manage real-time

performance degradation. efficiency.

energy flows between systems.

calibrated prediction intervals into scenario-averaged
objectives and chance-style feasibility, while adaptive-
ly updating exchanger and solar-collector efficiency
from GBRT; and (1) cross-sector generalizability
demonstrated by an 18-month deployment across
four heterogeneous facilities.

This study addresses the identified gap by de-
veloping and implementing a comprehensive D'T-
enabled thermal energy management system. The
rationale for selecting a DT approach 1s its unique
ability to create a holistic, real-time, and predictive
virtual representation of the entire thermal network
of a manufacturing plant [33]. This allows for the
application of multi-objective optimization algo-
rithms that consider the system as a whole, balanc-
ing competing objectives such as energy efficiency,
cost, and carbon footprint in a way that 1s impossible
with traditional control strategies [34]. Beyond DT-
specific sources, multi-objective optimization 1s well
established across engineering: in production sched-
uling, dual-resource flexible job-shop formulations
routinely balance competing targets via evolutionary
search [27]; In power systems, optimal-power-flow
studies synthesize cost, security, and environmental
criteria under nonconvex constraints [14]; and many-
objective hybrids address high-dimensional trade-ofts
characteristic of complex operations [34]. This study
adopts that mature MOO perspective—explicitly co-
ordiating energy, cost, and emissions—while embed-
ding 1t in a DT that enforces physics-layer feasibility
i real time. The use of a MATLAB Simulink en-
vironment coupled with Gradient Boosting Regres-
sion Trees (GBRT) provides a robust platform for
mtegrating high-fidelity physical models with power-

ful, data-driven predictive analytics. The primary aim
of this research is to design, deploy, and validate a
scalable DT framework for the holistic optimization
of thermal energy in sustainable manufacturing. The
specific objectives are:

* To develop a high-fidelity DT that integrates
real-ime data from diverse thermal assets, in-
cluding heat exchangers, WHR units, and re-
newable energy systems.

* To implement and validate hybrid models,
combining physics-based simulations with ML
for accurate predictive analytics of thermal per-
formance and energy consumption.

e To apply multi-objective optimization algo-
rithms within the DT framework to identify
optimal operational setpoints that simultane-
ously enhance energy efficiency, reduce costs,
and minimize carbon emissions.

e To quantify the performance improvements,
cost savings, and environmental benefits of the
DT system through deployment and testing in
real-world manufacturing environments within
Saudi Arabia.

This study provides empirical evidence of a fully
mmplemented, comprehensive thermal management
DT beyond conceptual frameworks. The frame-
work 1s scalable and integrates waste-heat recovery,
renewable mputs, and storage for system-level opti-
mization, offering a validated pathway to improve en-
ergy elliciency and advance sustainability in line with
Industry 5.0 principles. Its cross-sector applicability
indicates practical relevance for environmental and
cost performance.
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2. Methodology

2.1 Study Design and Site Selection

This study spanned 24 months using a multi-site
pre-test/post-test design. The first six months estab-
lished the baseline and calibrated the system; the
subsequent 18 months covered deployment and per-
formance monitoring. Four manufacturing facilities
located in the industrial cities of Jubail and Yanbu in
Saudi Arabia were selected as implementation sites.
The selection criteria were designed to ensure diver-
sity and generalizability of the findings across differ-
ent industrial contexts. These criteria included: (1)
significant thermal energy consumption as a propor-
tion of total energy use; (2) presence of established
heat exchanger networks and waste heat sources; (3)
pre-existing, albeit basic, sensor infrastructure and
data logging capabilities; and (4) management com-
mitment to implementing operational changes based
on the system's recommendations. The selected
plants represented four distinct industrial sectors:
petrochemicals, steel manufacturing, food and bever-
age processing, and pharmaceuticals, each present-
g unique thermal load profiles and operational
constraints.

2.2 Data Acquisition and Instrumentation
Architecture

A comprehensive data acquisition network was
established to provide the real-ime data streams nec-
essary for the D'T's operation. The system integrated
a total of 342 thermal measurement points distrib-
uted across the four facilities. The nstrumentation
architecture was designed to be robust and scal-
able, utilizing a combination of existing and newly
mstalled industrial-grade sensors. Temperature was
measured with four-wire PT100 RTDs (accuracy
+0.1°C) 1nstalled on all inlet and outlet ports of heat
exchangers, thermal storage tanks, and major process
fluid pipelines. Flow rates used clamp-on ultrasonic
meters (accuracy £1.5% of reading) to ensure non-
mvasive installation and minimal process disruption.
For the renewable energy subsystems, specifically the
solar thermal arrays, pyranometers were installed to
measure solar irradiance in the plane of the array,
providing critical input for predicting thermal energy
generation. Data from all sensors were sampled at a
one-minute frequency and transmitted wirelessly to
a central on-site data aggregator using the Message
Queuing Telemetry Transport (MQTT) protocol, a

lightweight messaging protocol suitable for industrial
10T applications. The aggregated data were then re-
layed to a secure cloud-based server, where they were
timestamped and stored in a time-series database for
processing by the DT framework. This centralized
architecture ensured data integrity, security, and ac-
cessibility for the modeling and optimization algo-
rithms.

2.3 Digital Twin Framework Development

The core of this research was the development
of a comprehensive DT framework using the MAT-
LAB Simulink environment. This platform was cho-
sen for its strong capabilities in multi-domain simu-
lation and its seamless integration with data-driven
modeling toolboxes. The framework comprised two
primary modeling layers: a physics-based simulation
core and a ML-based predictive layer.

2.4 Physics-Based Thermal Modeling

Physics-based models were developed for the
primary thermal assets to simulate their dynamic be-
havior based on fundamental engineering principles.
For counter-/co-current heat exchangers, the rate of
sensible heat transfer is modeled using the Log-Mean
Temperature Difference (LMTD) method [9].

Q=U-4-AT}, (1
with

ATy = oB0
In(AT,/AT,)

mhcp,h (Th,in - T;:,out) = mccp,c (T;,out - T;,in) = Q

where Q 1s the heat transfer rate; U is the overall
heat transfer coefficient; 4 1s the heat transfer area;
AT, =T, T, o a0d AT,=T,,,—T.,;, (counter-current;
definitions are adjusted for co-current); m,,, m, and
Com Cpe are the hot/cold-side mass flow rates and
specific heats; 7, denote stream temperatures. To
capture fouling and degradation, U 1s not constant;
it 1s updated at each optimization interval using the
GBRT predictive layer conditioned on flow, temper-
ature differences, and operating hours since cleaning.

For the thermal energy storage (TES) vessels, a
lumped-capacitance energy balance is used [24].

. AT

dt = Qin - Qout - Qloss (3)

m>cp
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with losses modeled as

Qloss Ioss env( TES — amb)' (4)

where m and ¢, are the TES fluid mass and spe-
ci'ﬁc heat; Trgs 1s the well-mixed storage temperature;
0,10, are charging/discharging rates; UlgAen 15
the overall heat-loss conductance to ambient; T,
1s ambient temperature. These physics-based mod-
els provided a robust foundation for simulating the
system's response to operational changes. Governing
model structure and assumptions. The physics layer
represents the plant as a node-edge thermal network
in discrete time (1-min sampling). Each control vol-
ume (node j) obeys an energy balance

= > e, (T - T)+Q‘”“—U

AT -T ),
dt L j( J amb)

)

where C; is the effective thermal capacitance; 71;
and ¢, ; are inter-unit mass flow and specific heat;
T, T;are node temperatures; Q;Xt aggregates unit-
level sources/sinks (e.g., exchanger O, TES charge/
discharge, boiler firing, WHR inputs); and U;4; ac-
counts for distributed losses. Solar-thermal collectors

contribute:

Q =1 (Grop s AT) Grop Aoy (6)

with Gy, the measured plane-of-array irradiance,
Ao the collector area, and 7, (+) a calibrated efficiency
map updated by the GBRT layer to reflect operating
AT and incident flux. Operational constraints used by
the optimizer are enforced on the physics layer states
and nputs:

L<T(0)<T. iy < (0)<rm,

(7)
0<u, (1)<, |m,(t)—m,(t—A1)| <R A,
and TES operating limits:
Trps < Tips(£) < T, 0<SOC() <1. 8)

Here, T, are process-supply temperatures; #1, are
loop flow rates; u, are normalized pump/valve com-
mands; R; are ramp-rate limits; and SOC 1s the nor-
malized state of charge derived from the TES balance.

Assumptions are: (i) Single-phase, Newtonian flu-
ids i all modeled loops; (1) negligible axial conduc-
tion within heat-exchanger channels (LMTD validity);
(i1) TES vessels are well-mixed (lumped capacitance);
(iv) ¢, 1s treated as constant within observed operat-
g ranges and is fluid-specific; (v) pressure-drop/

hydraulic effects are handled implicitly via allowable
flow-rate ranges rather than detailed momentum bal-
ances; (vi) distributed heat losses are represented by
linearized overall conductances Ui4,; (vi)) no heat
of reaction 1s modeled in process streams (sensible
heat only); (vii)) measured inlet/outlet temperatures
and flow rates act as boundary conditions; and (ix)
the overall heat-transfer coefficient U for exchangers
and the solar-collector efficiency map 7, are updated
every optimization interval using the GBRT layer
to capture fouling, degradation, and weather-driven
variability.

To relate sensing accuracy to thermal balances,
this study applies a first-order (delta-method) propa-
gation on any scalar quantity Q = f(0) derived from
measured temperatures/flows (e.g., LMTD heat rate
m Eqs. (1)-(2)). With covariance matrix 2. for 0 (as-
sembled from sensor specifications and observed co-
variances), the variance of Q is approximated by:

o

where 0 collects measured temperatures and flow
rates; Zij are their covariances; and 9f/ 00; are partial
derivatives of fevaluated at current operating points.
Local, dimensionless sensitivity indices are reporte-
das SZ’ zﬁe_Q for LMTD variables (AT, AT,, U,

020
A) and TES balance terms (m, ¢,, UjA.,), enabling
operators to identify parameters to which Q is most
responsive under current conditions.

These additions close the physics-optimization
loop by making explicit the state dynamics, exoge-
nous inputs, and enforceable constraints used by the
NSGA-II module while preserving the original objec-
tive function formulation.

2.5 Machine Learning Integration for
Predictive Analytics

To augment the physics-based models and cap-
ture complex, non-linear behaviors that are difficult
to model from first principles, an ML layer was in-
tegrated into the DT [35], [36]. A GBRT algorithm
was selected for this purpose due to its high predic-
tive accuracy, robustness to overfitting, and ability to
handle heterogeneous data types. The GBRT model
was trained to perform two key predictive tasks: (1)
forecasting near-term thermal energy demand of the
manufacturing processes, and (2) predicting the per-
formance of the renewable energy systems based on
weather forecasts.
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The model was trained on the mnitial six months
of baseline data. Input features for the model in-
cluded historical sensor readings (temperatures, flow
rates), operational parameters (production sched-
ules, equipment status), ambient weather conditions,
and forecasted weather data. The model was trained
to predict key output variables, such as process heat
load and solar thermal generation, over a 1-to-6-hour
forecast horizon. The dataset was partitioned into an
80% training set and a 20% testing set, with 10-fold
cross-validation employed during the training phase
to ensure model generalization. The predictive accu-
racy of the trained models was evaluated using the
Mean Absolute Percentage Error (MAPLE), as de-
fined in Equation (10) [26].

4,-F,

MAPE =
=1

100% &
°y (10)

Here, 4, 1s the actual value, F, 1s the forecast value,
and 7 1s the number of observations. This metric was
crucial for validating the model's reliability before its
deployment for real-time optimization.

Uncertainty quantification for real-time fore-
casts: In addition to point forecasts, this study now
computes calibrated prediction mtervals (PIs) for
each site and forecast horizon using a distribution-
free conformalization of GBRT residuals. Let p,
denote the GBRT point forecast and let {e.} be ab-
solute residuals on a rolling calibration window. For
a nominal miscoverage level a€(0,1), we form the
(1-0) PL, [¥,- 1> Vi T q14], Where g, 1s the em-
pirical (1-a) quantile of {e,} computed per site and
horizon. Intervals update with the same 30-min ca-
dence as optimization and inherit the GBRT feature
set (production state, temperatures/flows, ambient
and forecasted weather). As a concrete reference, the
residual dispersion depicted in Figure 1d (standard
deviation = 29.1 kW for the representative petro-
chemical load) implies, under a normal approxima-
tion, a 95% PI half-width of about 1.96x29.1=57 kW
for that case; conformal Pls are reported without dis-
tributional assumptions.

Model selection rationale and benchmarking:
GBRT was chosen for this study because it (1) cap-
tures non-linear interactions among temperatures,
flow rates, and ambient/weather covariates with high
data efficiency; (i) remains robust under multicol-
linearity and missingness patterns common in indus-
trial telemetry; (in) provides stable predictions near
regime edges where operating constraints change; (iv)
yields feature importance profiles that support opera-
tor interpretability; and (v) retrains quickly enough

to integrate with the 30-min optimization cadence.
To verify suitability, we benchmarked GBRT against
two alternatives representative of common practice:
a Random Forest regressor (bagged trees) and feed-
forward neural networks configured with comparable
capacity. Across 1-6 h horizons and all four facilities,
GBRT matched or exceeded the alternatives in held-
out accuracy while exhibiting lower variance in resid-
uals around operating transitions, and it imposed a
substantially lower monitoring and retraining burden
than neural networks.

Hyperparameters and tuning protocol: We
trained least-squares GBRT models with tree-based
weak learners. Hyperparameters were tuned by nest-
ed, tme-aware (blocked) 10-fold cross-validation on
the six-month baseline window, with the outer split
preserving temporal order to prevent leakage and
the mnner split used for selection. The search space
included: number of boosting iterations, learning
rate, maximum tree depth (via maximum number
of splits), mmimum leaf size, subsampling ratio,
and column subsampling ratio. Feature scaling was
applied where appropriate for numerical stability;
missing values were imputed using forward-fill within
streams and median back-fill at fold boundaries. The
final configuration for each site and forecast horizon
minimized a composite score that prioritized MAPE
and RMSE on the validation folds while enforcing
parsimony to facilitate periodic retraining. Models
were then refit on the full training portion (809) and
evaluated on the 209 hold-out set.

Alongside MAPE, we computed the Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE),
and coefficient of determination (R?) on the held-out
data:

1
MAE  =—> |4 -F]

RMSE = fli(At—Ft)z,
no5 (11)

n

2(A4-F)
R’ =1-+t

S (4, - Ay

Here, 4, denotes the actual value at time ¢, F, the
forecast, 4 the sample mean of actuals on the eval-
uation set, and z the number of observations. These
metrics corroborated the correlation and MAPE re-
sults reported below, with small absolute errors rela-
tive to operating ranges and R? close to 1 across sites
and horizons.

International Journal of Industrial Engineering and Management



Mukhitdinov et al.

2.6 Multi-Objective Optimization Strategy

With an accurate predictive model of the entire
thermal system, a multi-objective optimization strat-
egy was employed to determine the optimal opera-
tional setpoints. The goal was to simultaneously 1im-
prove energy efficiency, minimize operational costs,
and reduce the carbon footprint.

2.7 Formulation of the Objective Function

The optimization 1s posed in three objectives—
minimizing primary energy input, monetary cost, and
COz-equivalent emissions—under the physics-layer
constraints in Egs. (7)-(8). We optimize the vector of
normalized objectives [26].

mjnx J(X) = (Jcncrgy (X)’ Jcost (X), Jcmissions (X)) (12)

where x denotes the decision vector of operational
setpoints (pump/valve commands, flow targets, TES
charge/discharge rates) for the next optimization win-
dow; Jepergy 15 the total primary energy input, Jyo 18
the corresponding operating expenditure (electricity
and fuel), and Jpigsions 1 the CO2-equivalent footprint.
Fach objective 1s normalized to a unitless scale prior
to non-dominated sorting in NSGA-II.

The NSGA-II module operates directly on the
vector J (i.e., without scalar weights) and returns
the Pareto-optimal set. The recommended op-
erating point 1s chosen as the knee point on this
set, reflecting the largest aggregate marginal im-
provement across objectives. For operator-facing
ranking only (e.g., to order alternatives on the
HMI or to break ties among similarly knee-like
points), we compute an ~auxilialy prefgrence score

Jtotal = Wenergy Jenergy + Wcost Jcost + Wemissions "]emissions VVlth
Wenergy + Wcosl + Wemissions =1 and J(-) the IlOI'IlllelZCd

objectives. Unless explicitly specified by the operator,
aneutral setting w=(1/3,1/3,1/3) 1s used. This ranking
step does not affect the NSGA-II search or the con-
struction of the Pareto front. This formulation—op-
erating directly on normalized vector objectives with
knee-point selection—mirrors common engineering
MOO practice in scheduling and many-objective set-
tings, where explicit trade-offs are preferred over sca-
larization to support deployment decisions [26], [34].

2.8 Optimization Algorithm

The Non-dominated Sorting Genetic Algorithm
II (NSGA-II) was selected to solve this multi-objec-
tive optimization problem. NSGA-II is well-suited

for complex, non-linear systems with competing
objectives. The algorithm works by evolving a pop-
ulation of potential solutions (i.e., combinations of
operational setpoints for pumps, valves, and storage
systems) over a series of generations. At each genera-
tion, it uses mechanisms of elitism, non-dominated
sorting, and crowding distance assignment to guide
the search towards a set of globally optimal trade-off
solutions, known as the Pareto front. This front rep-
resents the set of solutions where no single objective
can be improved without degrading at least one other
objective. The DT then selects the knee-point solu-
tion—the most balanced trade-off—and recommends
it to operators.

Robust objectives and chance-style constraints:
T'o propagate forecast uncertainty into decision-mak-
g, this study augments NSGA-II with scenario-aver-
aged objectives and probabilistic feasibility. For each
optimization cycle, we draw S scenarios from the cur-
rent PIs of the exogenous drivers (process load and
solar-thermal output). Let J e(;grgy(x) , JP (x), and
JE) o (X) denote the three objectives evaluated on
scenario s using the physics layer subject to Eqgs. (7)-
(8). We minimize the scenario averages:

minx (jenergy (x)’jcost (x )’jemissiolls (x ))9
s (13)
where J,(x) = S ZJ,(S) (x),

s=1

subject to chance-style feasibility on operational
limits:

Pr(7,(t) < T™ V1) > 0.95, W
1
Pr(m™ <m, (1) <m™ V1)=0.95,

with x the vector of setpoints (pump/valve com-
mands, flow targets, TES charge/discharge), Ty(?)
process-supply temperatures, and m,(t) loop flows.
Feasibility probabilities are estimated from the S sce-
narios; deterministic feasibility 1s recovered when Pls
collapse. The knee-point selection continues to oper-
ate on the resulting Pareto set.
variables;

Defliniions.  x  are  decision
S energy > Jeost s S eaissions A€ scenario-averaged objec-

tives; 7", m™, and m™

s

are the existing bounds
m Egs. (7)-(8); Pr(+) denotes probability with respect
to the PI-induced scenario distribution.

2.9 Implementation and Validation Protocol

The validated DT system was deployed for an
18-month period. The optimization module ran ev-
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ery 30 minutes, generating updated operational set-
points for the next operational window. These rec-
ommendations were displayed to plant control room
operators through a dedicated Human-Machine In-
terface (HMI). The protocol involved operators re-
viewing and implementing these setpoints, effective-
ly closing the loop between the digital and physical
worlds. Performance was continuously monitored
and compared against the baseline data collected
during the mitial six months. The baseline represent-
ed the operational performance using the traditional,
non-integrated control strategies. This comparison
allowed for a direct quantification of the improve-
ments attributable to the DT system. No changes to
process equipment, control strategies, or capital en-
ergy-efficiency retrofits were introduced concurrently
with the activation of the DT optimization; operators
mmplemented only the DT-recommended setpoints
during the deployment phase, per site operating logs
and change-control records.

2.10 Performance Metrics and Statistical
Analysis

To quantify the system's effectiveness, a set of
Key Performance Indicators (KPIs) was defined and
tracked throughout the study. The primary KPI was
the overall TEE, calculated as shown in Equation

(15) [9].

E,
TEE(%) = @xmo (15)

Z Einput

Here, Y E i 18 the sum of all thermal energy
productively used in manufacturing processes, and
Y Einput1s the sum of all primary energy consumed by
the thermal systems, including grid electricity, fuel,
and credited solar input.

Carbon emission reductions were calculated by
monetizing the reduction in consumption of grid
electricity and natural gas, using emission factors spe-
cific to the Saudi Arabian energy mix. The total cost
savings were calculated based on the metered reduc-
tion m energy consumption multiplied by the cor-
responding utility tariffs. Finally, the system payback
period was determined by dividing the total mitial in-
vestment in additional sensors and computing infra-
structure by the annualized cost savings achieved. All
performance improvements were reported as per-
centage changes relative to the established baseline
period. In addition, all effect sizes are now reported
as site-specific estimates and cross-site weighted aver-
ages with 95% confidence intervals obtained from the

site-pooled iterrupted time-series model using New-
ey-West standard errors. Where headline aggregate
percentages are cited (e.g., for waste-heat recovery
and solar-thermal performance), the text explicitly
identifies them as cross-site weighted averages.

To attribute observed improvements to the D'T-
enabled optimization rather than to exogenous varia-
tion, this study augments the pre-test/post-test design
with a site-pooled mterrupted time-series (I'T'S) analy-
sis at a monthly resolution. We estimate a segment-
ed-regression model with site fixed effects, month-
of-year indicators, and covariates for production and
weather:

Vi =B, +pt+ 3D, + B (txD)+a, +

11
+7 Z, 4 OM,, +¢&,. (16)
m=1

where y;, 1s, In separate specifications, TEE (in
%) or emissions intensity (COy-equivalent per unit
of useful thermal energy) for site 7 in month £ ¢ 1s a
linear time index; D, indicates the DT-optimization
period; o; are site fixed effects; Z;, includes produc-
tion volume, ambient temperature, and plane-of-ar-
ray irradiance Gpop; M, are month dummies; and
&;;denotes the error term. We report Newey-West
standard errors to accommodate serial correlation.
Two safeguards address potential confounding: (1)
any planned plant-wide shutdowns or abnormal op-
erations trigger an exclusion window of two weeks
on either side when estimating y;; (1) placebo-date
checks within the baseline period and pre-trend tests
assess spurious discontinuities. Maintenance logs
were reviewed to confirm that no major energy-ef-
ficiency capital upgrades (e.g., boiler replacements,
heat-exchanger retrofits) coincided with the interven-
tion window; routine cleanings were retained and re-
corded in Z;, via fouling/cleaning indicators.

2.11 Validation and Verification

This study employed a multi-layer validation and
verification protocol spanning the physics layer, the
predictive (ML) layer, and the closed-loop field de-
ployment. The protocol formalizes acceptance crite-
ria, links each criterion to the governing models and
constraints, and specifies how quantitative outcomes
are reported.

(1) Physics-Layer Verification and Uncertain-
ty Treatment. The thermal network and
component models (heat exchangers via
LMTD; TES energy balance) were verified
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against measured inlet/outlet temperatures
and flows under normal operations, with the
overall heat-transfer coeflicient and collector
efficiency map updated by the GBRT layer
each optimization interval. Measurement un-
certainty was propagated using the first-order
delta method (Eq. (9)), and local sensitivity
indices were monitored to identify parame-
ters with the greatest leverage on computed
heat rates and TES balances. Verification ac-
cepted models whose residuals remained un-
biased and small relative to operating ranges
and for which sensitivity-identified parame-
ters remained within calibrated limits.
Predictive-Layer Validation. The GBRT
models were trained on the baseline win-
dow with an 80/20 temporal split and nested,
blocked 10-fold cross-validation. Accuracy
was evaluated using MAPE (Eq. (10)) and
corroborated with MAE, RMSE, and \(R"2))
(Eqg. (11)). To quantify forecast uncertainty,
conformalized prediction intervals were
computed per site and horizon using rolling
residuals; interval calibration was performed
with the same 30-minute cadence as optimi-
zation. Acceptance required high predictive
fidehty on held-out data with residuals cen-
tered at zero and tight empirical coverage of
the nominal itervals.

Closed-L.oop Field Validation. Following
baseline calibration, the DT-enabled optimi-
zation ran every 30 minutes for 18 months
with operator execution through the HMI.
Change-control logs confirm that, during
deployment, no capital retrofits or control-
strategy changes coincided with optimization
activation; operators implemented only the
DT-recommended setpoints. Causal attribu-
tion and persistence of effects were assessed
using a site-pooled interrupted time-series
segmented regression (Eq. (16)) with site
fixed effects, month indicators, production/
weather covariates, Newey-West errors, ex-
clusion windows around planned shutdowns,
and placebo/pre-trend checks.

Operational Feasibility and Safety. Recom-
mended setpoints were constrained by the
physics-layer limits on temperatures, flows,
ramp rates, and TES state (Egs. (7)-(8)). To
propagate forecast uncertainty into decisions,
scenario-averaged objectives with chance-
style feasibility were enforced (Eq. (14)); only
solutions meeting the feasibility threshold (at

least 0.95) were presented to operators. The
knee-point solution on the Pareto set served
as the default operator-ready recommenda-
tion.

(b)) Reporting of Validation Outcomes. Quan-
titative outcomes for the above protocol—
mncluding correlation, MAPLE, residual dis-
tributions, site-level and pooled efficiency/
emissions effects, and the composition of
savings—are presented in the Results and
Discussions section (Figures 1-5; Tables
2-3) using the definitions and statistical treat-
ment specified in this Methodology.

This consolidated subsection documents the
procedures and acceptance criteria that underlie
the predictive accuracy, physics-model fidelity, and
field-level performance improvements reported for
this work, without altering analyses or results already
presented.

3. Results and Discussions

This section presents the empirical findings de-
rived from the 24-month study, systematically detail-
g the performance of the DT-enabled thermal en-
ergy management system. The results are organized
to first validate the predictive accuracy of the core
models, then to quantify the system-wide improve-
ments in energy efficiency, and finally to assess the re-
sulting economic and environmental impacts across
the four participating manufacturing facilities.

3.1 validation of the Digital Twin's Predictive
Accuracy

A foundational requirement for effective optimi-
zation 1s the ability of the DT to accurately predict
the thermal dynamics of the manufacturing environ-
ment. The performance of the GBRT model, which
formed the predictive layer of the DT, was rigorously
validated against real-world operational data from the
testing dataset. The analysis focused on the model's
ability to forecast two critical variables: the near-term
process thermal energy demand and the generation
potential of the itegrated solar thermal systems. To
provide a comprehensive assessment of the model's
predictive capabilities, a mult-faceted analysis was
conducted, the results of which are presented in Fig-
ure 1. This figure is structured into four panels to
llustrate different aspects of model performance.
Figure la provides a time-series comparison of the
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Figure 1. Validation of the GBRT predictive model. (a) Time-series comparison of predicted versus actual process thermal load.
(b) Time-series of predicted versus actual solar thermal generation. (c) Correlation scatter plot of all predicted versus actual values.
(d) Histogram of prediction residuals.

GBRT model's forecasted thermal load against the
actual measured load for a representative 72-hour pe-
riod at the petrochemical facility, demonstrating the
model's temporal tracking ability. Figure 1b presents
a similar time-series comparison for the predicted
versus actual energy generation from the solar ther-
mal array, highlighting the model's capacity to han-
dle intermittent renewable sources. To assess overall
predictive fidelity beyond a single time slice, Figure
1 ¢ shows a scatter plot correlating all predicted values
against their corresponding actual values from the en-
tire validation dataset across all four plants. Finally,
Figure 1d displays a histogram of the prediction re-
siduals (the difference between actual and predicted
values) to characterize the distribution and bias of the
model's errors.

The results confirm the high fidelity of the predic-
tive model. As shown in Figure 1a and Figure 1b, the
model's predictions closely tracked the actual mea-
sured values, capturing both the cyclical patterns of
production and the stochastic nature of solar energy
availability. The tight clustering of points along the
line of perfect agreement in the scatter plot (Figure

1c) further substantiates the model's accuracy across
a wide range of operational conditions. The Pearson
correlation coefficient between predicted and actual
values was calculated to be r = 0.98, indicating a very
strong positive linear relationship. The histogram of
residuals (Figure 1d) approximates a normal distri-
bution centered at zero, confirming that the model's
predictions were unbiased and that errors were ran-
dom rather than systematic. Across the entire valida-
tion dataset, the GBRT model achieved a MAPE of
3.8%, which corresponds to a predictive accuracy of
96.2%. This level of accuracy was deemed sufficient
to provide reliable inputs for the mult-objective opti-
mization algorithm.

In addition to MAPE and Pearson correlation, we
evaluated MAL, RMSE, and R? on the held-out sets.
All three metrics were consistent with the findings in
Figure 1—absolute errors remained small relative to
plant-level thermal load ranges, residuals were cen-
tered and approximately normal (Figure 1d), and
R?was close to unity across all facilities and forecast
horizons.
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3.2 Performance of the Multi-Objective
Optimization Algorithm

Following the validation of the predictive models,
the Non-dominated Sorting Genetic Algorithm 1I
(NSGA-II) was deployed to identify optimal opera-
tional setpoints. The algorithm's function was to navi-
gate the complex trade-offs between the three primary
objectives: minimizing total energy consumption, re-
ducing operational costs, and lowering carbon emis-
sions. The output of a single optimization run is not
a single solution but a set of non-dominated solutions
known as a Pareto front. To visualize the outcome
of this process, an analysis was conducted to plot the
solution space generated by the NSGA-II algorithm
during a representative optimization cycle for the steel
manufacturing plant. The resulting three-dimensional
Pareto front is illustrated in Figure 2. This figure plots
the achievable combinations of the three competing
objectives: total energy input (in GJ), operational cost
(in USD), and COz-equivalent emissions (in kg). Fach
point on the surface represents a feasible operational
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strategy where no single objective can be mmproved
without compromising at least one other objective.
The figure also highlights the "knee point" solution se-
lected by the DT, which represents the most balanced
trade-off among the competing goals.

The analysis presented in Figure 2 demonstrates
the core decision-making capability of the DT frame-
work. The shape of the Pareto front reveals the in-
herent conflicts in the system; for instance, achieving
the absolute minimum cost might require using a
cheaper, more carbon-intensive fuel source, there-
by increasing emissions. Conversely, minimizing
emissions might necessitate using more expensive
renewable energy or curtailing a process, Increasing
operational cost. The DT's ability to generate this
entire frontier of optimal solutions in near-real-time
provides operators with a systematic, evidence-based
basis for strategic decision-making. The automated
selection of the knee point provides a robust and ob-

Jective method for balancing these competing prior-

ities, moving beyond the traditional, often reactive,
operational adjustments based on a single metric like

Figure 2. Three-objective Pareto front from a representative 30-min optimization cycle at the steel plant. Axes report total primary
energy input (GJ), operational cost (USD), and CO,-equivalent emissions (kg). Each point on the grey surface is a non-dominated
solution returned by NSGA-II under the physics-layer constraints (Eqs. (7)-(8)) and objective definitions (Eq. (12)); solutions differ in
pump/valve setpoints, flow targets, and TES charge/discharge schedules. The red marker denotes the knee-point recommendation
used for operator guidance, identified as the solution with the largest aggregate marginal improvement across the normalized
objectives (Egs. (12)-(14)). Moving along any single axis improves that objective while worsening at least one other, illustrating the
fundamental trade-offs coordinated by this study’s optimizer.
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cost. This optimization process, running continuous-
ly every 30 minutes, allowed the system to dynamical-
ly adapt to changing energy prices, production sched-
ules, and weather conditions. For practical reading
of Figure 2, the slope of the surface along each axis
indicates diminishing returns: near the knee, small
relaxations in cost or energy typically yield dispro-
portionately large emissions reductions, whereas
away from the knee the same relaxations buy little
multi-objective benefit.

3.3 System-Wide Improvements in Thermal
Energy Efficiency

The primary measure of the DT system's success
was Its ability to improve the overall TEE of the par-
ticipating facilities. The TEE was calculated for the
6-month baseline period (prior to DT implementa-
tion) and compared against the average TEE dur-
ing the 18-month deployment phase. This pre-test/
post-test analysis allowed for a direct quantification
of the system's impact. The comparative analysis of
TEE across the four industrial plants 1s presented
i Figure 3. This figure is composed of two panels
to provide both site-specific and aggregate views of
the performance improvement. Figure 3a presents a
grouped bar chart comparing the baseline TEE with
the D'T-enabled TEE for each of the [our facilities:
Petrochemical, Steel Manufacturing, Food & Bev-
erage, and Pharmaceutical. This allows for a direct
comparison of the intervention's impact in diverse
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industrial settings. Figure 3b aggregates the data from
all four plants to show the overall, weighted-average
mmprovement in TEE across the entire study cohort.

The implementation of the DT system resulted
i significant and consistent improvements in TEE
across all participating sites. As detailed i Figure 3a,
each facility demonstrated a marked increase in TEE.
The steel manufacturing plant exhibited the largest
relative gain, with its TEE improving from 48.2% to
62.1%, an increase attributable to the DT's effective
management of its highly variable and large-scale
waste heat sources. The pharmaceutical plant, which
has stringent temperature control requirements, saw
its efficiency rise from 55.4% to 66.8%. On aggregate,
as shown 1n Figure 3b, the overall TEE across all four
facilities increased from a baseline average of 51.7%
to a DT-enabled average of 65.7%. This represents a
relative improvement of 27.1%, confirming the sub-
stantial impact of the holistic, integrated management
approach. When reading Figure 3a, non-overlapping
95% confidence mtervals indicate statistically support-
ed site-level gains; Figure 3b summarizes the pooled
effect with the same uncertainty model, ensuring that
the aggregate reflects both between-site differenc-
es and within-site serial correlation. Improvements
were consistently positive but not uniform across fa-
cilities; the steel plant showed the largest relative TEE
gain, whereas the pharmaceutical plant’s increase was
smaller due to tighter temperature constraints and
fewer recoverable waste-heat streams. Per-site means
and 959% confidence intervals are shown in Figure 3a.

(b) Aggregate TEE Performance
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Figure 3. Changes in overall thermal energy efficiency (TEE = useful /input energy, Eq. (15)). (a) Per-site baseline vs. DT-enabled TEE
(site-specific means with 95% confidence intervals estimated from the site-pooled interrupted time-series model using Newey-West
standard errors). Bars show the model-based means over the evaluation windows; error bars reflect parameter uncertainty, not
short-term variability. (b) Cross-site aggregated TEE computed from the same ITS model; the point estimate and 95% confidence
interval are derived from the pooled fit, providing a consistent uncertainty treatment across facilities.
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The I'TS analysis with site effects, month-of-year
indicators, and covariates for production, ambient
temperature, and G, vields a statistically supported
level shift at the optimization start and, in most sites, a
favorable slope change thereafter. Excluding windows
around planned shutdowns, placebo-date checks
within the baseline, and pre-trend tests do not mdi-
cate spurious discontinuities. These controls do not
materially alter the direction or practical magnitude
of the TEE and emissions improvements reported in
Figures 3-4. To understand the underlying drivers of
this efficiency gain, a detailed breakdown of the per-
formance of key energy subsystems was conducted.
The results of this analysis, comparing the annualized
performance during the baseline and D'T-enabled pe-
riods, are presented in Table 2. The table provides
precise numerical values for WHR, renewable energy
mtegration, and primary energy consumption.

The data in Table 2 clearly 1dentify the sources of
the overall efficiency improvement. The most signifi-
cant contribution came from enhanced WHR. The
DT's ability to predict both the availability of waste
heat and the demand for low-grade process heat al-
lowed 1t to increase the total amount of recovered
energy by 40.9% and the overall energy re-use rate
by 41.0%. Furthermore, by optimizing the flow rates
and storage strategies for the solar thermal system, its
effective efficiency was icreased by 18.9%, leading
to a 19.1% increase in useful solar energy generation.
This enhanced utilization of on-site resources direct-
ly translated mto a substantial reduction in external
energy demand, with primary fuel consumption de-
creasing by 25.1% and grid electricity consumption

falling by 22.3%.

3.4. Economic and Environmental Impact
Assessment

The improvements in energy efficiency translated
directly mnto significant economic and environmen-
tal benefits. The environmental impact was assessed

by calculating the reduction in COz-equivalent emis-
sions resulting from the decreased consumption of
natural gas and grid electricity, using emission factors
specific to the Saudi Arabian energy sector. The eco-
nomic impact was quantified by calculating the total
cost savings based on prevailing utility tariffs. To illus-
trate the environmental benefits over the study's du-
ration, an analysis of the monthly carbon emissions
was performed. The findings are presented in the
two-panel Figure 4. Figure 4a displays a time-series
plot of the aggregate monthly COa-equivalent emis-
sions from all four facilities over the entire 24-month
study period, clearly delineating the baseline and D'T-
enabled phases. This visualizes the sustained reduc-
tion achieved after the system's implementation. To
provide msight into the source of these reductions,
Figure 4b presents a stacked bar chart that compares
the composition of emissions (from natural gas vs.
grid electricity) during the baseline period with the
DT-enabled period.

The deployment of the DT system led to a pro-
found and sustained reduction in the environmental
footprint of the participating facilities. As shown in
Figure 4a, a distinct and immediate drop in monthly
emissions occurred at the start of month seven, co-
inciding with the activation of the DT's optimization
engine. This lower level of emissions was mamntained
throughout the 18-month deployment phase. In ag-
gregate, the system achieved a 349 reduction in
carbon emissions compared to the baseline, corre-
sponding to a total abatement of 15,400 tons of CO--
equivalent over the 18-month operational period.
Figure 4b reveals that this reduction was driven by de-
creased consumption of both natural gas, the prima-
ry source of process heat, and grid electricity, which
powers pumps and auxiliary systems. In IFigure 4a,
the level shift at the dashed line coincides with DT
activation; persistence of the lower trajectory over
the subsequent months evidences a sustained effect
rather than a transient anomaly. The financial per-
formance of the DT implementation was evaluated

Table 2. Detailed breakdown of annualized energy system performance metrics (Baseline vs. DT-Enabled)

DT-Enabled Period (Annualized) Percentage Change (%)

Performance Metric Unit  Baseline Period (Annualized)
Waste Heat Recovered GWh 18.6

Energy Re-use Rate % 35.1

Solar Thermal Generation GWh 8.9

Solar System Efficiency % 423

Primary Fuel Consumption T 154,200

Grid Electricity Consumption ~ MWh 12,850

26.2 +40.9%
49.5 +41.0%
10.6 +19.1%
50.3 +18.9%
115,500 -25.1%
9,980 -22.3%
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Figure 4. CO,-equivalent emissions (tCO,-eq) before and after activation of optimization. (a) Aggregate monthly emissions across all
four facilities; the vertical dashed line marks the start of the DT-enabled phase (month 7), with background shading distinguishing
baseline vs. DT-enabled months. (b) Decomposition of average annual emissions by source (natural gas for process heat; grid
electricity for auxiliaries) for the two phases, clarifying that reductions arise from both fuel displacement and lower electrical
demand via coordinated WHR/TES dispatch.

by comparing the investment costs against the opera-
tional savings. A summary of the economic outcomes
for each facility and in aggregate is provided in Table
3. The table details the mitial investment required for
supplementary sensors and computing hardware, the
annualized cost savings realized through reduced en-
ergy consumption, and the resulting payback period
for the investment.

The economic results underscore the financial
viability of the DT-enabled approach. The system
generated aggregate cost savings of approximately
$2.8 million over the 18-month deployment period.
The payback period varied across facilities, reflecting
differences 1n their scale of energy consumption and
mitial investment requirements. The energy-inten-
sive petrochemical and steel plants realized payback
periods of under six months. The pharmaceutical
plant, with lower energy consumption but high-value
processes, had the longest payback period at 14.0
months. The average payback period across all sites
was 6.6 months, indicating that the DT system rep-

resents a highly attractive investment for industrial
decarbonization and cost reduction.

3.5 Use-Case lllustration of Real-Time
Dynamic Optimization

To provide a tangible example of the DT's op-
erational value, a specific 24-hour period from the
food and beverage plant was analyzed. This period
was characterized by a forecasted mid-day peak i
production demand coinciding with an un-forecasted
drop in solar availability due to sudden cloud cover.
The D'T's response to this challenging scenario 1s de-
tailed in the four-panel analysis presented in Figure
5. Figure ba shows the solar conditions, plotting the
forecasted irradiance against the actual measured ir-
radiance and the resulting drop in thermal energy out-
put. Figure 5b illustrates the thermal energy demand
profile of the plant, showing the scheduled peak. Fig-
ure 5S¢ displays the operational response of the TES
unit, showing its state of charge as it is dispatched by

Table 3. Summary of economic performance and payback period across facilities

Initial Investment

Annualized Cost Total Savings over Payback Period

Facility sector (USD) Savings (USD) 18 Months (USD) (Months)
Plant 1 Petrochemical 280,000 680,000 1,020,000 5.0
Plant 2 Steel Mfg. 350,000 750,000 1,125,000 5.6
Plant 3 Food & Bev. 190,000 260,000 390,000 8.8
Plant 4 Pharmaceutical 210,000 180,000 270,000 14.0
Aggregate/Average - 1,030,000 1,870,000 2,805,000 6.6
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Figure 5. Real-time orchestration during an un-forecasted mid-day solar shortfall in the food & beverage plant. (a) Forecasted vs.
actual plane-of-array irradiance and resulting solar-thermal output; the shaded interval highlights the cloud-induced deficit.

(b) Thermal demand profile with the scheduled peak period (orange band). (c) TES state of charge: morning charging from waste-
heat recovery (WHR) positions the store to buffer the deficit; rapid mid-day discharge bridges the shortfall before evening recharge.
(d) Resulting supply stack (primary fuel, WHR, TES discharge, solar-thermal) used to meet total demand. Together, panels (a)-(d)
show the control logic of this study: forecast-aware pre-charging, contingency dispatch in response to deviations, and minimal boiler
use at the peak.

the DT. Finally, Figure 5d presents the resulting en-
ergy mix used to meet the plant's demand, breaking
down the contribution from solar, WHR, the TLES
unit, and primary fuel.

The sequence of events in Figure 5 provides a
clear illustration of the D'T's integrated control logic.
The DT's forecast had anticipated the afternoon pro-
duction peak (Figure 5b) and had proactively charged
the TES unit using low-cost waste heat captured dur-
ing the morning. When the unexpected drop in so-
lar generation occurred (Figure 5a), the system faced
a potential shortfall. A conventional control system
would have been forced to respond by immediate-
ly firing up the primary fuel boiler, incurring high
costs and emissions. In contrast, the DT, recogniz-
ing the deviation from its solar forecast, immediate-
ly dispatched the stored energy from the TES unit
to bridge the gap, as shown by the rapid discharge
cycle in Figure 5H¢. The final energy mix (Figure 5d)
shows that the demand peak was met primarily by a
combination of WHR and stored energy, with only

minimal reliance on the primary boiler. Accordingly,
the stacked bars i Figure 5d should be read left-
to-right as the time-aligned supply composition: the
TES slice expands precisely over the clouded inter-
val 1dentified 1 Figure 5a, maintaining the demand
trajectory in Figure 5b without a step-increase in pri-
mary firing. This single use-case demonstrates the
system's ability to move beyond static control, using
predictive insights and holistic resource management
to enhance resilience, maintain operational stability,
and mimimize costs and emissions in the face of real-
world variability.

The successful implementation of the DT frame-
work demonstrates that a holistic, predictive ap-
proach to thermal management yields gains that
exceed those achieved by traditional, siloed optimi-
zation [37]. The significant 27.1% improvement in
overall TEE and 349 reduction in carbon emissions
are not merely the sum of mdividual component
upgrades. Instead, they represent a systemic benefit
derived from the D'T's ability to intelligently orches-
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trate the dynamic interplay between WHR, renew-
able energy generation, and thermal storage in real-
time. The use-case scenario (Figure 5), where the
DT preemptively dispatched stored energy to buffer
against an un-forecasted solar deficit, epitomizes this
shift from reactive control to predictive, system-wide
optimization, thereby enhancing both efficiency and
operational resilience.

These findings provide crucial empirical valida-
tion that advances beyond the conceptual frame-
works and isolated component optimizations preva-
lent in current literature [10], [23]. While studies
focusing solely on advanced WHR systems report
efficiency gains in the range of 10-15% [9], and oth-
ers have demonstrated the value of process-specific
Al models [24], our results confirm that integrating
these elements under a unified DT achieves a syn-
ergistic effect. The demonstrated performance sur-
passes the piecemeal improvements previously docu-
mented and provides empirical evidence consistent
with the performance anticipated in conceptual DT
architectures. A primary limitation, however, is that
the study was conducted in large, well-instrumented
facilities in Saudi Arabia's advanced industrial cities.
The economic viability and practical implementa-
tion of such a comprehensive framework in small
and medium-sized enterprises or regions with lower
digital maturity remain unverified, as the mnitial invest-
ment in sensor infrastructure could be prohibitive.

4, Conclusions

This study developed, deployed, and field-validat-
ed a plant-scale digital-twin framework that couples
physics-based thermal models with machine-learning
forecasts and multi-objective optimization to coordi-
nate process heat, waste-heat recovery, thermal stor-
age, and on-site renewables n real time across het-
erogeneous facilities. By operating on Pareto sets and
selecting the knee point, while enforcing chance-style
feasibility under forecast uncertainty, the system gen-
erated operator-ready setpoints that respected pro-
cess limits and ramp-rate constraints throughout de-
ployment. Aligned to the stated objectives, this work
delivered: (1) a validated, high-fidelity DT integrating
live telemetry with physics models for key thermal as-
sets; (i) hybrid predictive analytics with demonstrat-
ed accuracy that supported rehable short-horizon
control; (i1) real-ime, plant-wide co-optimization
that balanced energy use, operating cost, and emis-
sions; and (iv) quantified, field-scale benefits. Across
the four facilities over 18 months, overall thermal-

energy efficiency increased from 51.79% to 65.7% (rel-
ative improvement 27.1%), driven by higher waste-
heat re-use and improved solar-thermal utilization;
carbon emissions decreased by 349% (15,400 tons
COz-equivalent abated); aggregate cost savings were
approximately USD 2.8 million with an average pay-
back of 6.6 months; and predictive fidelity reached
96.29% accuracy (MAPE 3.89%). These effects are con-
sistent with the site-pooled mterrupted time-series
analysis and persisted without capital retrofits during
the optimization phase.

Practical implications follow directly. First, plant-
scale orchestration unlocks synergies that isolated
upgrades cannot: pre-charging storage from waste
heat and dispatching it through knee-point policies
reduced boiler firing at peaks, stabilized operations,
and lowered both cost and emissions. Second, un-
certainty-aware optimization and explicit feasibility
constraints enabled safe automation and trustworthy
operator recommendations. Third, because deploy-
ment required only incremental instrumentation and
HMI integration, the approach is actionable for large,
sensor-equipped sites seeking rapid decarbonization
with minimal disruption.

Two boundaries to generalization remain. This
study focused on large, well-instrumented facilities in
advanced industrial hubs, so transferability to small
and medium-sized enterprises or low-maturity con-
texts 1s not yet established. Moreover, economics will
vary with energy tariffs and emissions factors. Future
research should prioritize making this technology
more accessible. A critical avenue 1s the development
of a "D'T-lite" framework that utilizes advanced mfer-
ence models to reduce the required density of physi-
cal sensors, lowering the barrier to entry for small and
mediums-sized enterprises. Furthermore, future work
should explore the integration of more advanced con-
trol algorithms, such as deep remforcement learning
[38], which could potentially learn more complex op-
erational policies and adapt more rapidly to dynamic
energy markets and pricing schemes than the genetic
algorithm employed in this study.
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