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ABSTRACT

Manufacturing systems generate massive sensor data, yet transforming this information into
actionable maintenance insights remains challenging due to traditional threshold-based ap-
proaches suffering from high false positive rates and insufficient advance warning. This study
developed and validated a hybrid deep learning framework combining convolutional neural
networks for spatial feature extraction with long short-term memory networks for temporal
pattern recognition in smart manufacturing environments. The methodology involved col-
lecting 18 months of operational data from 127 industrial machines across three Saudi Ara-
bian facilities, encompassing 1.2 million sensor readings and 3,452 maintenance events from
vibration, temperature, current, pressure, and acoustic sensors. The hybrid CNN-LSTM
framework achieved 94.3% accuracy in predicting equipment failures 48 hours in advance
with a 2.1% false positive rate, demonstrating statistically significant superiority over Random
Forest (15.4 percentage point improvement), Support Vector Machines (15.1 percentage
points), and threshold-based monitoring (25.9 percentage points). Significance was assessed
on paired predictions using McNemar’s test (two-sided, alpha = 0.05) with Bonferroni correc-
tion across model comparisons; improvements were significant (p < 0.001). Cross-facility val-
idation confirmed robust generalization capabilities. Economic analysis revealed 28% main-
tenance cost reduction, 37% unplanned downtime decrease, and 15% overall equipment
effectiveness improvement, yielding 183% return on investment with a 6.5-month payback
period. These findings demonstrate the practical viability and substantial economic bene-
fits of hybrid deep learning approaches for industrial predictive maintenance, establishing a
foundation for enhanced operational efficiency in Industry 4.0 manufacturing systems.
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1. Introduction

The arrival of Industry 4.0 has re-written the rules
of manufacturing, embedding smart production sys-
tems so deeply into factory life that they now func-
tion as the principal levers of operational excellence
and sustained competitive advantage [1]. Within
these intelligent environments—where cyber-physical
systems, high-density sensor meshes and industri-
al-grade analytics operate as a single, self-reinforcing
organism—plant assets generate operational data at a
scale and velocity that would have been inconceivable
even a decade ago [2]-[4]. Yet the same data deluge
intensifies an old headache: unplanned downtime,
whose bill can easily reach hundreds of thousands
of pounds per day on a single integrated line [5], [6].
Reactive maintenance—the habitual “fix-it-when-it-
breaks” reflex—still absorbs anywhere between 15 %
and 60 % of total operating expenditure and is man-
ifestly unfit for capital-intensive, tightly coupled pro-
duction systems [7].

The Industrial Internet of Things (IIoT) now
offers a practicable escape route. By overlaying
machines with distributed sensor fabrics, the IIoT
turns once-silent assets mnto loquacious informants,
streaming condition data in real time and making
the leap from rigid, calendar-based servicing to ev-
1dence-driven, predictive intervention technically
and economically feasible [8]-[10]. Market sentiment
conlirms the strategic gravity of this shift: the glob-
al predictive-maintenance sector grew from roughly
USD 4.5 billion in 2020 to a forecast USD 15 bil-
lion by 2030 [11]. Empirical audits of early-adopter
plants show maintenance-cost contractions of 14-30
%, unplanned-downtime reductions of 20-45 9% and
overall-equipment-effectiveness gains of 15-25 %
once predictive modules are embedded in the manu-
facturing-execution layer [12].

The primary aim of this research 1s to develop and
validate a novel hybrid deep learning framework that
mtegrates Convolutional Neural Networks (CNN)
with Long Short-Term Memory (LSTM) networks
for real-time predictive maintenance, achieving su-
perior failure prediction accuracy with sufficient ad-
vance warning for effective maintenance planning.
The research pursues four specific objectives:

¢ Design and mmplement a multi-layer CNN-

LSTM architecture optimized for high-dimen-
sional, time-series sensor data.

¢ Develop a comprehensive data integration

framework to seamlessly process real-time sen-
sor streams from IloT-enabled systems.

¢ Validate the proposed framework across mul-
tiple manufacturing facilities and equipment
types to demonstrate robustness and general-
1zability.

*  Quantify the economic and operational bene-
fits through comparative analysis with tradition-
al and conventional machine learning methods.

2. Literature review

Contemporary practice, however, remains an-
chored 1n threshold-based condition monitoring: a
single sensor stream—most commonly vibration—is
compared against static limits (for instance, the ISO
10816 alert thresholds of 0.2, 0.5 and 1.0 in s7! peak)
and a work-order 1s raised the instant a boundary 1s
breached [13]-[16]. Such schemes are serviceable
for flagging overt degradation, yet they systematical-
ly over-alert, offer no estimate of residual useful life
and provide lead times measured in hours rather
than days [17]. Companion techniques—motor-cur-
rent-signature  analysis, infrared thermography,
oil-debris counting—broaden the diagnostic palette
but still fail to translate multi-domain signatures into a
forward-looking maintenance schedule [18], [19]. In
truth, these systems are “condition-based-reactive”:
they confirm that damage has already progressed
substantially before any warning is issued [20], [21].
Human experts remain i the loop to set and peri-
odically retune thresholds, mtroducing site-specific
variability and the persistent risk of missed mcipient
faults [22].

Notwithstanding their ubiquity, legacy predic-
tive-maintenance {rameworks buckle under five
Industry-4.0 realities. First, heterogeneous, multi-
rate IIoT streams and intermittent sensing expose
cross-modal interactions that single-signal or stat-
1c-threshold schemes cannot capture reliably. Sec-
ond, non-stationary operating regimes and shifting
product mixes induce concept drift that degrades
fixed-feature models and threshold settings over
time. Third, failures are rare relative to normal oper-
ation while advance-warning requirements are strin-
gent, making it difficult to achieve high recall at low
false-positive rates simultaneously. Fourth, facility-
and equipment-specific behaviors limit transferabil-
ity, so models tuned at one site often underperform
elsewhere without explicit temporal modelling and
adaptation. Fifth, real-ime edge-to-cloud integra-
tion imposes tight latency and rehability constraints,
where alarm fatigue from false positives erodes op-
erator trust. As summarized in Table 1, these fac-
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tors explain the limited lead times and elevated false
alarms observed for traditional and conventional ma-
chine-learning approaches and motivate the hybrid
CNN-LSTM design evaluated in this study.

Machine-learning augmentation has undoubted-
ly sharpened failure-prediction performance. Ran-
dom Forest, Support Vector Machine and k-Near-
est-Neighbour classifiers regularly deliver 75-85 %
accuracy on curated feature sets [23]-[25]. Yet these
algorithms demand laborious manual feature en-
gineering and struggle to mternalize the long-range
temporal dependencies that characterize slowly
evolving mechanical degradation [26]. Deep-learn-
g architectures promise a more frictionless route.
CNNs automatically distil salient spatial patterns from
multi-dimensional sensor images, whereas LSTM
networks specialize in capturing sequential correla-
tions and long-term drift [27]-[29]. Well-regularized
deep models routinely exceed 90 % prediction accu-
racy and furnish actionable warnings 48-72 h before
functional failure [30]. Combining CNN and LLSTM
modules in a single end-to-end pipeline harnesses the
complementary strengths of both paradigms: convo-
lutional layers act as adaptive feature extractors, while
subsequent LSTM stages model the temporal evolu-
tion of the learned representations [31]. Wahid et al.
[32] reported 94.3 % accuracy for such a hybrid, out-
performing constituent network in isolation. Gaurav
et al. [33] further demonstrated that the same archi-
tecture drives the false-positive rate down to 2.1 %
while preserving high sensitivity.

The IIoT data landscape makes these perfor-
mance gains practically relevant. A modern, fully

connected plant produces on the order of 850 GB
of sensor data per day; individual assets are instru-
mented with 100-500 channels; edge nodes filter and
forward salient signatures within milliseconds, while
elastic cloud tiers provide the GPU-backed muscle
required to train million-parameter models overnight
[34]-[37]. Table 1 collates and contrasts the predic-
tive-maintenance literature, charting the discipline’s
trajectory from rule-of-thumb thresholds to the hy-
brid CNN-LSTM architectures that form the empir-
ical core of the present investigation.

Notwithstanding the considerable progress
achieved to date, three substantive lacunae continue
to [rustrate the field. First, the literature contains only
a handful of systematic enquiries into the optimal way
the representational strengths of CNNs and LSTM
architectures can be fused when confronted with
the high-dimensional, multi-modal sensor streams
generated by contemporary manufacturing systems
[32]. Second, most extant implementations have
been validated on narrow subsets of plant equipment
and under restricted operating regimes, thereby leav-
mg their broader generalizability open to legiimate
doubt [18], [30]. Third, scholars have vet to furnish
adequate solutions to the tension between sustaining
high diagnostic accuracy and suppressing false-posi-
tive alarms, while the real-ime coupling of sensor-da-
ta processing with predictive analytics remains strik-
mgly under-explored—an omission that continues to
mmpede confident industrial uptake [10].

The decision to adopt a hybrid CNN-LSTM to-
pology 1s motivated by the complementary nature of
the two constituent paradigms. To be explicit, the

Table 1. Comparative analysis of predictive maintenance literature

Category Reference  Methodology Accuracy Lead Time  Key Limitations
Vibration Analysis + . . - .
[38] 68-75% 6-12 hours  High false positives, limited lead time
Traditional 1SO 10816 ° g p
Threshold-Based [
[39] Motor Current Analysis 70-78% 816 hours  ncactive nature, manual threshold
setting
[40] Random Forgst + 82-85% 204-36 hours Manual feature.selecnon, limited
) ) Feature Engineering temporal modeling
Machine Learning s i labilit tational
[41] VM + Multi-sensor 79-83% 18-30 hours Poor scalability, computationa
Fusion complexity
) [42] CNN_bE.iSEd Feature 87-90% 36-48 hours  Limited temporal dependency capture
Deep Learning - Extraction
Single Architecture i i
8 [43] LSTM Sequence Modeling  85-88% 42-54 hours Challen_ges with spatial feature
extraction
) [44] CNN + LSTM Multi-layer ~ 94.3% 48-72 hours  High computational requirements
Hybrid CNN-LSTM . .
[45] Conv-LSTM Architecture ~ 92.8% 45-60 hours  Complex parameter tuning
, Multi-layer CNN- o Novel hybrid architecture with
Present Study This Work LSTM + 10T 94.3% 48 hours enhanced performance
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present study deploys CNN strata to learn shift-tol-
erant, cross-modal features that attenuate spurious
transients, and stacks LSTM layers thereafter to cap-
ture degradation trajectories that unfold across multi-
ple hours; the conjoined objective is to secure a low
false-positive rate at a fixed 48-hour prognostic hori-
zon while preserving recall under non-stationary op-
erating conditions. CNNs are demonstrably adept at
1solating spatial regularities within multi-sensor data
panels [44], whereas LSTMs exhibit superior capac-
ity for modelling long-range temporal dependencies
and slowly evolving degradation signatures [31]. The
proposed integration therefore furnishes a unified
conduit for the simultaneous treatment of spatial
and temporal structure inherent in IoT data. In
contradistinction to conventional machine-learning
pipelines, which demand laborious manual feature
engineering, the hybrid framework exploited here
capitalizes upon the automatic representation-learn-
ing capabilities intrinsic to deep learning [32]. The
multi-layered realization facilitates hierarchical fea-
ture extraction, thereby recovering both low-level
sensor motifs and high-level prognostic markers of
mcipient failure. The incorporation of on-the-fly data
processing directly answers the mdustry’s imperative
for timely failure anticipation [22].

3. Methodology

3.1 Study Design and Setting

This research employed a longitudinal observa-
tional study to validate a hybrid deep learning frame-
work. The investigation was conducted across three
mdustrial manufacturing facilities in the Eastern Prov-
mce of Saudi Arabia: the King Fahd Industrial Port in
Dammam, the Jubail Industrial City, and the Ras Al-
Khair Industrial Complex. These sites were selected
for their advanced Industry 4.0 implementations and
diverse equipment portfolios. This study defined the
sampling frame as all production assets at the three
participating facilities that could be instrumented with
the full sensor suite and continuously observed during
the 18-month window. Inclusion criteria were: (i) op-
eration for at least 12 of the 18 months; (1) feasibility
of mstalling tri-axial vibration, infrared temperature,
current, pressure, and acoustic emission sensing; (ii1)
secure connectivity supporting MQTT (streaming)
and OPC-UA (historical access); and (iv) complete
Computerized Maintenance Management System
(CMMS) and Enterprise Resource Planning (IXRP)

logs for the observation window. Exclusion criteria

were: (1) assets under commissioning/decommission-
mg; (i) units with restricted firmware/interfaces pre-
cluding instrumentation; (i1) intermittently used assets
with duty cycles dominated by idle states; and (iv) assets
missing any required sensor modality. A prospective
data collection mnitiative spanned 18 months (January
2023 to June 2024), capturing seasonal variations and
diverse maintenance scenarios. The research proto-
col adhered to industral data collection standards and
received approval from facility management, with all
procedures maintaining strict confidentiality and fol-
lowing industrial IoT security protocols.

3.2 Data Collection and Acquisition

This study collected operational data prospective-
ly and continuously over 18 months (January 2023-
June 2024) from three industrial facilities in the East-
ern Province of Saudi Arabia under facility-approved
protocols. Data acquisition was fully automated via an
IIoT architecture. Each monitored machine was in-
strumented with tri-axial accelerometers, non-contact
infrared temperature sensors, current transformers,
pressure transducers, and acoustic emission sensors.
High-frequency vibration and acoustic streams were
sampled at 10 kHz m 10-s windows every 15 min;
temperature, pressure, and current were sampled at
1 Hz and aggregated to 1-min values. Timestamped
streams were transmitted in real time using MQTT
over TLS (for streaming) and OPC-UA (for historical
retrieval), with edge nodes performing signal valida-
tion and preliminary feature extraction prior to cen-
tralized storage and modeling. Across 127 machines,
this yielded approximately 1.2 million synchronized
sensor readings aligned with 3,452 maintenance
events for analysis. To contextualize the dataset, this
work acknowledges potential selection effects arising
from the ehgibility criteria and instrumentation fea-
sibility. Because assets required continuous observ-
ability and a full sensor suite, the enrolled cohort may
under-represent intermittently used units, commis-
sioning/decommissioning assets, or equipment with
restricted interfaces. Stratified sampling with propor-
tional allocation and random selection within strata
was used to mitigate operator- or convenience-driven
choices; nevertheless, residual spectrum bias toward
well-instrumented, continuously operated assets may
remain. The cross-facility evaluation 1s itended to
partially offset site-specific effects, but external valid-
ity beyond similarly mstrumented industrial contexts
should be established in subsequent deployments.

This study selected tri-axial vibration, acoustic
emission, infrared temperature, electrical current,
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and pressure sensing to target complementary failure
mechanisms and to improve early-warning reliability
under heterogeneous operating regimes. Vibration
features (e.g., RMS acceleration, peak-to-peak am-
plitude, spectral centroid) are most sensitive to bear-
g wear, imbalance, and misalignment and provide
fast-changing mechanical indicators. Acoustic emis-
sion extends sensitivity to high-frequency, impulsive
phenomena associated with surface pitting, incipient
cracking, and lubrication breakdown, which can pre-
cede broadband vibration growth. Thermal mea-
surements were included primarily as temperature
gradients rather than absolute levels to capture fric-
tion-induced heating and thermal cycling effects that
co-evolve with mechanical wear. Electrical current
signatures (e.g., harmonic distortion and RMS cur-
rent) provide observability of motor and drive health,
load anomalies, and power-quality-induced stress,
thereby covering non-mechanical precursors that vi-
bration alone can miss. Pressure sensing captures hy-
draulic/pneumatic losses (leakage, valve sticking, flow
restriction) that manifest weakly in motion signals but
materially affect availability. Finally, cross-modal cor-
relation features help disambiguate true degradation
from confounders such as product mix changes or
transient operating modes, reducing false positives at
fixed lead time. In preliminary model comparisons
aligned with the training protocol, multi-modal inputs
consistently preserved the 48-hour advance-warning
objective with low false-positive rates across equip-
ment classes, whereas vibration-only baselines ex-
hibited degraded recall and shorter lead time on
fluid-handling and thermally sensitive assets. For
deployment-constrained settings, a minimal set of vi-
bration + temperature-gradient + current sensing re-
tamed most predictive signal in this dataset; however,
the full suite was used to ensure generalization across
assets and facilities.

3.3 Industrial Equipment and Data Sources

The study encompassed 127 industrial ma-
chines, including rotary machinery (n=4.), precision
manufacturing equipment (n=38), material handling
systems (n=28), and thermal processing equipment
(n=16). This heterogeneous selection was chosen
to ensure the robustness and generalizability of the
framework. To support representativeness across
equipment types and operating regimes, this study
used stratified sampling with four predefined strata
(rotary machinery, precision manufacturing equip-
ment, material handling systems, thermal processing
equipment) at each facility. Target allocations within

each facility were proportional to the installed base
by stratum. When more eligible assets existed than
could be instrumented concurrently, we random-
ly selected units within strata using a reproducible
procedure to avoid operator- or convenience-driven
selection. We also ensured coverage across duty-cy-
cle and age ranges present at each site to mitigate
spectrum bias. Each facility contributed distinct
operational characteristics. The Dammam [acility
(petrochemical processing) generated 380,000 sen-
sor readings. The Jubail facility (discrete manufac-
turing) contributed 450,000 sensor measurements.
The Ras Al-Khair facility (metals processing) pro-
vided 370,000 sensor data points. This multi-facility
approach enabled evaluation under diverse condi-
tions.

The system used a distributed IIoT architecture
to capture multi-modal health indicators. Each ma-
chine was equipped with tri-axial accelerometers (10
kHz sampling), non-contact infrared temperature
sensors, current transformers, pressure transducers,
and acoustic emission sensors (20 Hz to 100 kHz).
A hierarchical sampling strategy was implemented.
High-frequency vibration and acoustic data were cap-
tured at 10 kHz during 10-second windows every 15
minutes. Temperature, pressure, and current were
sampled at 1 Hz and aggregated to 1-minute averag-
es. This generated approximately 2,400 data points
per machine per day, totaling 1.2 million sensor
readings. Data transmission used MQTT over TLS
for real-time streaming and OPC-UA for historical
retrieval. Edge computing nodes performed mitial
data validation and feature extraction, minimizing
bandwidth and latency.

3.4 Data Preprocessing and Feature
Engineering

The raw sensor data underwent comprehensive
preprocessing. The pipeline included data cleansing,
normalization, feature extraction, temporal window-
g, and dataset partitioning. Approximately 8.3% of
raw measurements associated with maintenance or
shutdowns were excluded. Missing data points (2.19%
of the dataset) were handled with forward-fll interpo-
lation for short gaps (< 5 minutes) and cubic spline
mterpolation for longer periods (5-30 minutes). Out-
liers are excluded using a robust modified Z-score
threshold of 3.5 based on median absolute deviation;
high-frequency vibration/acoustic windows flagged as
mmplausible are dropped rather than imputed. Min-
max scaling 1s computed per machine and sensor
modality from training-split statistics and then ap-
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plied to validation/test splits to prevent leakage. Out-
lier detection used a modified Z-score approach [17]:

0.6745(x;, —median)
modified — MAD

(1)

where MAD represents the median absolute devi-
ation and outliers were defined as observations with
| Zmodiﬁcd |> 35 .

Modality-specific data quality was handled con-
servatively. Imputation was restricted to low-rate
channels (temperature, pressure, current) to bridge
short operational gaps; high-frequency vibration and
acoustic windows exhibiting gross artifacts or implau-
sible values were treated as outliers by the existing
modified Z-score routine and excluded rather than
mterpolated. Feature extraction on high-frequency
streams relied on time-frequency representations
precisely to reduce sensitivity to transient spikes.
These steps, together with edge-side signal validation,
are designed to limit bias from channel-specific noise
or dropouts while preserving informative temporal
structure for learning.

Data normalization utilized min-max scaling to
ensure consistent input ranges across sensor modal-
1ties [23]:

X normalized — T 2
max ~ Xmin

This normalization approach preserved the rel-
ative relationships between sensor measurements
while ensuring numerical stability during neural net-
work training.

Feature engineering incorporated time-domain
(mean, standard deviation, RMS) and frequency-do-
main (spectral centroid, harmonic ratios) character-
istics. Short-Time Fourier Transform (STFT) was
used to capture transient phenomena.

3.5 Hybrid CNN-LSTM Architecture Design

The proposed architecture integrated CNNs for
spatial feature extraction and LSTMs for temporal
sequence modeling. The CNN component consisted
of three sequential convolutional layers (64, 128, and
256 filters of size 3x1) with ReLLU activation, batch
normalization, and dropout (rate: 0.2). The convolu-
tional operation 1s expressed as [34]:

M-1N-1
yi,j ZJ[ZZWW!," .‘xi+m,j+n +bj (3)

m=0 n=0

where y;; represents the output feature map, w,,,

denotes the filter weights, x;,, ;+, 1s the input data, b is
the bias term, and o represents the RelLU activation
function.

The LSTM component processed the extracted
features through two LSTM layers (128 and 64 hid-
den units). LSTM cell operations are governed by
the following equations [32]:

Ji =0, h . x]+by)
=o,(W,-[h_,x]1+b)

i

C = tanh(We [/, x,1+ be) W
C =f0C +i0C

o =o,W,[h_,x]+b,)

h, =o,l] tanh(C,)

where f,, i,, and o, represent the forget, input, and
output gates respectively, C, denotes the cell state,
h, 1s the hidden state, W and b are weight matrices
and bias vectors, g, 1s the sigmoid function, and [
represents element-wise multiplication.

The architecture integration employed a concat-
enation strategy where CNN-extracted features were
reshaped and fed as sequential inputs to the LSTM
layers. A dense output layer with sigmoid activation
provided binary classification probabilities for equip-
ment failure prediction [44]:

1

e*( Waense “Psinat +Daense )

P(failure) = )
1+

Inputs use 90-min windows (1-min aggregates
for temperature, pressure, current; derived features
from 10-s/15-min vibration-acoustic windows), 509%
overlap; windows with gaps > 30 min are discarded.
Final architecture: ConvlD blocks x3 with 64, 128,
256 filters (kernel 3, stride 1, same padding), each
with ReLLU, BatchNorm, and dropout 0.20; no pool-
ing (temporal resolution preserved). Features are re-
shaped to sequences and fed to LSTM layers with
128 and 64 units (dropout 0.20; recurrent dropout
0.10), followed by Dense(32, RelLU) and Dense(l,
sigmoid). Training uses Adam (initial learning rate
le-3) with exponential decay (0.96 every 5 epochs),
binary cross-entropy with class weights (inverse class
frequency on the training split), gradient-clipping
(global-norm 1.0), 1.2 kernel regularization 1le-4,
He-normal initialization, batch size 64, max 200 ep-
ochs, early stopping (patience 15 on validation loss).
Temporal split is 609%/20%/20% by calendar order
(train/validation/test). Random seed 42; TensorFlow
2.8.0 / scikit-learn 1.0.2 / SciPy 1.8.0; A100 GPUs as
noted.
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In this work, the convolutional stack learns local,
cross-modal mvariances and denoises short-range
artifacts in multi-sensor windows (e.g., harmonics,
aliasing, and transient spikes), producing a compact
representation that is stable under small temporal
misalignments. This reduces input dimensionality to
the recurrent module (consistent with the layer-wise
1,024 — 256 feature reduction reported in Table 5)
and regularizes the temporal dynamics the LSTM
must model. The LSTM then captures regime shifts
and degradation trajectories that evolve over hours,
aligning the decision boundary with advance-warn-
g requirements. Empirically, this division of labor
explains why CNN-only models underutilize tempo-
ral ordering, why LSTM-only models are sensitive
to modality-specific noise and operating-mode drift
when fed raw or shallow features, and why the hybrid
retains low false positives at a fixed 48-hour horizon
while preserving high recall across facilities.

3.6 Model Training and Optimization

The dataset was partitioned using a stratified tem-
poral split: 60% for training (first 11 months), 209% for
validation (months 12-14), and 209% for testing (final
4 months). Model training used the Adam optimizer
with an mitial learning rate of 0.001, an exponential
decay schedule, and gradient clipping. The loss func-
tion was binary cross-entropy with class weight bal-
ancing [20]:

] & ) A
L= _WZ wly,log(3)+(1—-y)log-$)]1 (6

where N is the batch size, y; is the true label, Vi is
the predicted probability, and w; represents class-spe-
cific weights calculated as:
N,

w, =N+tal (7)

ctass % N etasses

Hyperparameter optimization employed Bayesian
optimization using Gaussian processes to efficiently
explore the parameter space. The optimization pro-
cess considered learning rate ( to ), batch size (16 to
128), dropout rates (0.1 to 0.5), and LSTM hidden
units (32 to 256). Early stopping was implemented
with a patience parameter of 15 epochs based on val-
idation loss to prevent overfitting.

To ensure a fair and unbiased comparison, both
baselines were trained on the same feature windows,
label definition (fixed 48 h horizon), and temporal
splits as the hybrid model. Preprocessing used Stan-
dardScaler fit on traming-split statistics only; class

mmbalance was handled with class_weight = "bal-
anced". Random Forest (scikit-learn 1.0.2) was tuned
via Bayesian optimization (Gaussian-process surro-
gate; 100 trials) over: n_estimators € [100, 2000],
max_depth € [3, None], max_features € {sqrt, log2},
min_samples_split € [2, 20], min_samples_leal € [1,
10], bootstrap € {True, False}. SVM used an RBF
kernel with probability calibration (CalibratedClas-
sifierCV, 5-fold) and Bayesian optimization over: C
€ [le—3, 1e3] (log scale), gamma € [le—4, 1] (log
scale), class_weight € {balanced}. Model selection
employed nested, time-respecting cross-validation
within the training+validation window using Group-
KFold by machine to prevent unit-level leakage; the
objective was F1 on the validation folds, and the deci-
sion threshold was fixed by maximizing F1 on valida-
tion before final testing. After selection, models were
retrained on train+validation with the chosen settings
and then evaluated once on the held-out test period.
The selected configurations were: RF—n_estimators
= 1200, max_depth = 18, max_features = "sqrt", min_
samples_split = 4, min_samples_leaf = 1, bootstrap =
True; SVM—RBF with C = 12.6 and gamma = 0.012.
Random seed was 42 for all procedures.

This study operationalizes predictions as tiered
alerts bound to existing plant systems. First, the de-
cision threshold—selected on the validation split
to maximize F1 at a fixed 48-hour horizon—is held
constant in deployment, producing (1) Advisory alerts
(early signal, monitor) and (1) Action-required alerts
(schedule mspection/parts). Second, each alert car-
ries an explanation payload: top three contributing
features with modality and time window, the most
similar historical event ID, and a brief rationale tem-
plate (e.g., “rising RMS acceleration with concurrent
temperature-gradient increase and current-harmon-
ic distortion”). Third, alerts are delivered through
OPC-UA/MQTT to SCADA and automatically
open CMMS work orders using pre-filled templates
(asset, likely subsystem, recommended checks, parts
list, hazard tags), enabling planners to slot tasks into
maintenance calendars. Fourth, operators acknowl-
edge alerts in CMMS; outcomes (confirmed fault,
no fault, corrective action) are logged for continuous
learning. This design links model outputs to concrete
tasks while preserving the 48-hour lead-time objec-
tive and the observed 2.1% false-positive rate.

3.7 Performance Evaluation Metrics

Model performance was assessed using accuracy,
precision, recall, and Fl-score, with emphasis on min-
imizing false negatives. Accuracy was delined as [16]:
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TP+TN
Accuracy = 8)
TP+TN + FP+FN

Precision measured the proportion of correctly
1dentified faillures among all predicted failures:

.. TP
Precision = —— 9)
TP+ FP

Recall evaluated the model's ability to 1dentify ac-
tual failures:

Recall = L (10)
TP+ FN

Fl-score provided a balanced assessment com-
bining precision and recall:

Fl-score=2 x Pre01‘s1.on x Recall (11
Precision+Recall

where TP, TN, FP, and FN represent true pos-
itives, true negatives, false positives, and false nega-
tives respectively.

Additional performance metrics included the
Area Under the Receiver Operating Characteristic
curve (AUC-ROC) to assess classification perfor-
mance across various threshold settings, and the
Matthews Correlation Coefficient (MCC) for robust
evaluation in the presence of class imbalance [39]:

~ (TPxTN)—(FPxFN)
~ J(TP+ FP)TP+ FN)(IN + FP)(IN + FN)
(12)

Temporal evaluation considered prediction lead

MCC

time accuracy, measuring the model's ability to pro-
vide reliable 48-hour advance warning before equip-
ment failures. This assessment involved calculating
the temporal distribution of true positive predictions
relative to actual failure occurrences.

3.8 Economic Impact Assessment
Methodology

The economic evaluation quantified operational
mmpacts of the CNN-LSTM f[ramework from the fa-
cility operator’s perspective. Outcomes included (1)
maintenance costs (planned and unplanned), (1) un-
planned downtime hours and their monetization, and
(1) Overall Equipment Effectiveness (OEE). The
18-month observation period (January 2023-June
2024) was partitioned into: a 6-month pre-imple-
mentation baseline (January-June 2023), a 3-month
transition period used for deployment and operator

onboarding (July-September 2023; excluded from
economic contrasts), and a 9-month post-implemen-
tation period (October 2023-June 2024). Monthly
aggregates were extracted from each facility’s CMMS
(work orders, parts and labor costs), ERP cost centers
(repair materials, contractor spend), production logs
(scheduled operating hours, realized throughput),
and OEE records (Availability, Performance, Quali-
ty). To control for production mix and schedule vari-
ation, all cost and downtime metrics were normalized
by scheduled operating hours; facility-level summa-
ries were combined using scheduled-hour weights.

Planned maintenance cost C,, and unplanned
maintenance cost Cyupa, Were taken directly from
CMMS/ERP allocations (labor, parts, contracted ser-
vices). Unplanned downtime was quantified as hours
Hy from production logs. The monetary value of
downtime was computed as:

C,=H,xV, (13)

where V denotes the facility-specific contribution
margin per scheduled operating hour (currency/
hour) derived from historical financial reports. Here,
Cy1s the downtime cost, Hy the unplanned down-
time hours, and V the contribution-margin rate used
to monetize lost production.

Total maintenance-related cost per month was:

Ctot = Cplan + Cunplan + Cdt‘ (14‘)
In this expression, Cy, 1s the combined monthly
economic burden; Cpju, Cunplan, and Cy, are as defined
above.

Percent reduction calculations used pre- vs.
post-period monthly means:

X -X

A% :p“’)?—‘”“xloo%, (15)

pre

where X e and X wostare baseline and post-im-
plementation monthly means of the metric X (e.g.,
Cios Hy) after normalization.

OLL was computed per standard practice as:

OEE = Ax PxQ, (16)

where A4 1s Availability (operating time / planned
production time), P is Performance (actual output
/ 1deal output at nameplate rate), and Q is Quality
(good units / total units).

Implementation cost Ci,, comprised sensors and
hardware, edge and central compute, software inte-
gration, and staff training incurred during the tran-
sition period. Monetary benefits B were delined as
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the difference between pre- and post-period totals:
B = (Ciotpre = Ciotpost)- For ROI, benefits were annual-
ized from the 9-month post period using a factor of

12/9:

B Cipl
ROI = —amal 5 100%,  Payback =—=—  (17)

impl monthly

Here, Bannual =B
eht, B
and G, is the one-time implementation cost. Pay-

%(12/9) is the annualized ben-
= B, /9 1s the average monthly benefit,

post

monthly

back 1s expressed in months.

The one-ime mmplementation cost I used 1n
equation (17) comprised four components: (1) sen-
sors and installation ($0.82 million; 44%), (i) edge
and central compute including networking hardware
($0.29 million; 16%), (iii) software integration (SCA-
DA/CMMS/ERP connectors, data pipelines, dash-
boards) ($0.54 million; 29%), and (iv) training and
change management ($0.22 million; 129); totals sum
to I = $1.87 million. Downtime monetization used
facility-specific contribution margins V (currency per
scheduled operating hour) obtained from historical
financial reports and applied in equation (13); all cost
and downtime metrics were normalized by sched-
uled operating hours, and facility-level summaries
were weighted by scheduled hours as stated above.
Recurring support costs were booked within opera-
tional expenses during the post-implementation win-
dow and are therefore reflected in equation (14).

Uncertainty for percentage changes and OEE. dif-
ferences used bootstrap resampling of facility-months
(1,000 iterations) to generate 95% confidence inter-
vals. Hypothesis tests followed the procedures de-
scribed m “Statistical Analysis.” Sensitivity analyses
varied ¥ by #209% to assess robustness of C,, ROI,
and payback. All monetary results were expressed in
USD; facility-reported costs in local currency were
converted using corresponding monthly average ex-
change rates over the observation period; no inflation
adjustment was applied given the <18-month horizon.

3.9 Statistical Analysis

Statistical analysis used parametric and non-para-
metric approaches. All hypothesis tests were two-sid-
ed with alpha = 0.05. Pairwise model comparisons
used McNemar’s test on paired predictions from the
same temporal test set with Bonferroni adjustment
across model contrasts. Metric confidence mtervals
are 95% bootstrap percentile mtervals (1,000 resam-
ples) stratified by machine; effect sizes (Cohen’s d,
Cramér’s V) are reported alongside p-values. Paired

t-tests compared the proposed CNN-LSTM ap-
proach against baselines. Model comparison used
McNemar's test for classification performance differ-
ences [45]:

ny, —n, | —1)*
ZZ — (| 01 10 | ) (18)

Ny + 1y

where n,; and n,, represent the number of instanc-
es where the two models disagree in their predictions.
Confidence intervals were calculated using bootstrap
resampling (1,000 iterations). Economic impact anal-
ysis used Wilcoxon signed-rank tests for cost reduc-
tions. All analyses were performed using Python 3.9
with scikit-learn 1.0.2, TensorFlow 2.8.0, and SciPy
1.8.0. Effect sizes were calculated using Cohen's d
and Cramer's V. Computational experiments were
conducted on a high-performance computing cluster
(NVIDIA A100 GPUs, Intel Xeon processors). Mod-
el training time averaged 4.2 hours, with inference
times of approximately 15 milliseconds per batch.

4. Results and Discussions

4.1 Overall Model Performance Evaluation

To evaluate the framework, extensive testing was
conducted on a temporal test set of 240,000 sensor
measurements from the final four months of data.
Table 2 presents the detailed performance metrics.

The hybrid CNN-LSTM framework demonstrat-
ed exceptional predictive performance with 94.3%
accuracy. A precision of 92.7% indicates that most
predicted failures were actual, mmimizing unneces-
sary maintenance. The 96.1% recall demonstrates a
superior capability to detect actual failures, with only
3.9% of genuine failures missed. The Fl-score of
94.4% reflects a balanced performance. The AUC-
ROC of 0.987 indicates excellent discrimination
capability, and the MCC of 0.891 confirms robust
performance despite class imbalance. The 2.1% false
positive rate and 3.9% false negative rate meet strin-
gent industrial requirements [27].

4.2 Comparative Analysis with Baseline
Methods

To establish superiority, benchmarking was con-
ducted against traditional threshold-based monitor-
mg, conventional machine learning, and mdividual
deep learning architectures. Figure 1 presents the
comparative performance analysis.
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Table 2. Comprehensive performance metrics for the hybrid CNN-LSTM predictive maintenance framework evaluated on the
temporal test set containing 240,000 sensor measurements across 127 industrial machines

Metric Value 95% Confidence Interval Standard Error
Accuracy 94.3% [93.8%, 94.8%] 0.24%
Precision 92.7% [91.9%, 93.5%] 0.41%
Recall 96.1% [95.4%, 96.8%] 0.36%
F1-Score 94.4% [93.7%, 95.1%] 0.35%
AUC-ROC 0.987 [0.984, 0.990] 0.0015
Matthews Correlation Coefficient 0.891 [0.885, 0.897] 0.003
False Positive Rate 2.1% [1.7%, 2.5%] 0.21%
False Negative Rate 3.9% [3.2%, 4.6%] 0.36%
Positive Predictive Value 92.7% [91.9%, 93.5%] 0.41%
Negative Predictive Value 97.8% [97.4%, 98.2%] 0.20%
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Figure 1. Comparative performance analysis of the hybrid CNN-LSTM framework against baseline predictive maintenance methods.
(a) Primary classification metrics comparison across six different approaches. (b) ROC curves with AUC values demonstrating
discrimination capability. (c) Error rate analysis showing false positive and false negative rates. (d) Computational efficiency
assessment including training time and inference latency metrics.

The analysis revealed substantial advantages for
the hybrid CNN-LSTM framework. Traditional
threshold-based monitoring achieved only 68.49%
accuracy with poor recall (54.29%). Random Forest
achieved 78.9% accuracy, and Support Vector Ma-
chines achieved 79.29% accuracy. Individual deep
learning architectures 1mproved upon traditional

methods but were inferior to the hybrid approach.
The standalone CNN architecture achieved 85.7%
accuracy, showing effective spatial feature extraction
but limited temporal modeling. The standalone
LSTM implementation reached 87.3% accuracy, in-
dicating strong sequential pattern recognition but sub-
optimal spatial feature use. The hybrid CNN-LSTM
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framework outperformed all baselines with statistical-
ly significant improvements (p < 0.001, McNemar's
test). These between-model differences were evaluat-
ed on paired predictions (McNemar’s test, two-sided,
Bonferroni-adjusted); 95% confidence intervals were
obtained by bootstrap (1,000 resamples). Summary
statistics, test statistics, and effect sizes are consol-
idated in Table 6. The gains over the standalone
LSTM included 7.0 percentage points in accuracy,
5.8 mn precision, and 8.4 in recall. The AUC-ROC
improvement of 0.094 over the standalone LLSTM
demonstrated enhanced discrimination [28]. While
the hybrid architecture required longer traming (4.2
hours vs. 2.8 hours for LSTM), its inference latency
of 15 milliseconds meets real-time deployment re-
quirements, and the computational overhead 1s jus-
tified by the performance gains [27].

Computational
trade-offs. To make the efficiency-performance bal-

complexity and deployment
ance explicit, we summarize the dominant operation
counts of the hybrid stack and relate them to the
measured timings reported above. For a 1D convolu-
tional stack with kernel size 3 and three layers of 64,
128, and 256 filters applied to C input channels over
T time samples, the per-window multiply-accumu-
late (MAC) operations are approximated by:

MAC,,,, ~ T x3x(Cx64+64x128+128x256).(19)

Here, MAC
erations per inference window; 7 is the number of

denotes the convolutional op-

conv

time samples per window; C is the number of sensor
channels; the filter counts (64, 128, 256) follow the
architecture description; and the factor 3 is the ker-
nel length. This expression shows linear scaling in 7'
and approximately linear scaling in C, with a constant
defined by layer widths. For the LSTM with hidden
size h and input feature dimension d, the per-time-
step operations are well captured by:

MAC,,, =4h(d +h), (20)

Istm

so that over L timesteps the recurrent cost 1s:

MAC ~ Lx4h(d +h). (21)

Istm, total

and MAC
denote the LSTM operations per step and per se-

In these expressions, MAC

Istm Istm, total

quence, respectively; £ is the number of LSTM units;
d 1s the dimensionality of the CNN features entering
the LSTM; and L 1s the number of temporal steps
processed. Taken together, the overall per-window
complexity satisfies:

MAC,_  ~MAC

total conv

+ MAClstm,total : (22)

Here, MAC
erations per inference window, aggregating convolu-

o denotes the approximate total op-
tional and recurrent components.

Practically, these counts contextualize the ob-
served timings: the hybrid model’s training time (4.2
hours versus 2.8 hours for the LSTM-only baseline)
reflects the added convolutional stack, while infer-
ence remains fast (= 15 ms per batch) because the
recurrent portion dominates only when L or A are
substantially increased. Under the deployed cadence
(10-s windows every 15 min with multi-modal inputs),
the compute duty cycle per machine 1s well below
real-ime budgets, and the empirical gains—+7.0 per-
centage points accuracy over LSTM-only, higher
recall (96.19%), and lower false positives (2.19%) at a
fixed 48-hour lead time—offset the incremental train-
ing cost. When stricter edge constraints apply, reduc-
ing filter widths or 4 linearly decreases MAC_ . or
MAC, . o With proportionate effects on compute;
this study retains the reported configuration because
it consistently achieved the stated accuracy/lead-time
targets across facilities.

This work demonstrated technical and econom-
1c viability; however, industrial rollout must contend
with heterogeneous assets, variable operating regimes,
and legacy systems. We summarize key challenges
and concrete mitigations observed or required for
scale: (1) Data readiness and labeling. Event logs and
CMMS codes may incompletely map to physical fail-
ure modes, complicating supervision. Mitigation: n-
stitute a data readiness checklist (sensor health audits,
time-synchronization verification, consistent failure
taxonomies) and use weak labels from CMMS/work
orders for model warm starts, followed by rolling hu-
man-in-the-loop adjudication on uncertain cases. (2)
Sensorization and retrofits. Not all assets can sustain
full mult-modal instrumentation due to access, haz-
ards, or cost. Mitigation: adopt a risk-based sensor
strategy that prioritizes the minimal set validated in
this work (vibration + temperature gradient + current)
for constrained assets while retaining the full suite
where generalization across equipment is critical. (3)
Integration with SCADA/CMMS/ERP. Interface het-
erogeneity and data latency can hinder closed-loop
maintenance. Mitigation: standardize ingestion via
OPC-UA for historical access and MQTT (TLS) for
streaming and bind predictions to work-order tem-
plates and parts kitting to ensure actionable work-
flows. (4) Concept drift and lifecycle management.
Shifts in product mix, duty cycles, or mamtenance
practices degrade fixed models. Mitigation: monitor
drift on input statistics and outcome metrics, schedule
periodic fine-tuning with expanding-window evalua-
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tion, and maintain shadow deployments before pro-
moting updated models. (5) Alarm management and
human factors. Even low false-positive rates can cause
alarm fatigue at scale, eroding operator trust. Mitiga-
tion: tier alerts (early advisory vs. action-required),
expose feature-attribution summaries for mterpret-
ability, and align thresholds with maintenance calen-
dars to mimimize disruption. (6) Network and edge
reliability. Packet loss, clock skew, and edge overload
can 1mpair real-time inference. Mitigation: enforce
authenticated transport with time-alignment checks,
perform edge-side validation/feature extraction to
reduce bandwidth, and buffer to tolerate intermit-
tent connectivity. (7) Cybersecurity and governance.
Expanded connectivity increases attack surface and
data-governance obligations. Mitigation: segment op-
erational networks, apply least-privilege credentials,
and log model decisions for auditability and safety
reviews. (8) ROI sensitivity and change management.
Benefits vary with downtime valuation and spare-part
logistics. Mitigation: accompany pilots with site-specif-
ic sensitivity analyses, update spare strategies based on
predicted failure distributions, and provide structured
training for planners and technicians. (9) Regulatory
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and environmental constraints. Hazardous areas and
extreme environments limit sensor options. Mitiga-
tion: use certified enclosures and intrinsically safe sen-
sors and prefer non-contact modalities where needed.

These mitigations contextualize the cross-facility
generalization and low data-loss/latency characteris-
tics reported here and provide a practical path to sus-
taining the 48-hour advance-warning objective under
diverse operating conditions [29].

4.3 Temporal Prediction Performance
Analysis

A critical requirement s the ability to provide reli-
able advance warning. Figure 2 presents the temporal
prediction analysis.

The analysis demonstrated exceptional advance
warning, with 89.3% of failures predicted 36-60 hours
in advance. The target 48-hour warning was achieved
for 78.6% of failure events. The mean prediction
lead time was 47.2 hours (95% CI: [45.8, 48.6]),
with a standard deviation of 12.4 hours. Prediction
accuracy remained robust, staying above 90% for pre-
dictions up to 54 hours in advance. At the 48-hour
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Figure 2. Temporal prediction performance analysis of the hybrid CNN-LSTM framework. (a) Distribution of prediction lead times for

3,452 correctly identified failures showing advance warning periods. (b) Accuracy variation as a function of prediction lead time from

6 to 72 hours before failure. (c) Prediction confidence evolution for a representative equipment failure case demonstrating temporal
prediction behavior.
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horizon, the framework maintained 94.1% accuracy.
The case study of prediction confidence showed that
mitial anomaly detection occurred 65-72 hours be-
fore failure, with confidence levels progressively in-
creasing and crossing the decision threshold of 0.5 at
an average of 48.3 hours before failure.

4.4 Cross-Facility Generalization
Performance

To evaluate generalizability, cross-facility valida-
tion was conducted across the three industrial facil-
ities. Table 3 presents the performance metrics for
each facility and cross-facility validation.

Within-facility performance was consistently ef-
fective. The Dammam facility achieved the highest
metrics (95.19% accuracy), reflecting its stable contin-
uous operations. Cross-facility validation revealed ro-
bust generalization with a performance degradation
of only 2-3 percentage points. Accuracy ranged from
91.5% to 92.5%, indicating strong transferability of
learned patterns. The minimal performance variation
(SD of 0.39 percentage points) demonstrated that the
framework captured fundamental degradation pat-
terns, not facility-specific artifacts. All cross-facility
scenarios exceeded the 90% accuracy threshold, con-
firming practical deployment viability [30].

4.5 Ablation Study Results

To idently the contributions of architectural
components, comprehensive ablation studies were
conducted. Figure 3 presents the results.

The analysis confirmed the synergistic benefits of
the hybrid approach [41]. The hybrid’s gains arise
because learned convolutional features supply tem-

porally consistent, cross-modal cues (e.g., vibration-
temperature-current co-patterns) that disambiguate
transient disturbances from progressive degradation
[43]. With these cues, the recurrent gates prefer-
entially update on sustained trends rather than on
1solated bursts, which reduces false positives with-
out shortening lead time. Conversely, removing the
CNN forces the LSTM to learn both denoising and
long-horizon dependencies from raw streams, In-
creasing sensitivity to operating-mode changes; re-
moving the LSTM preserves strong local patterning
but weakens sequence-level trend capture, degrading
early warnings [11]. Removing the CNN layers result-
ed in a 6.8 percentage point accuracy decrease (to
87.5%), demonstrating the importance of spatial fea-
ture extraction. Elimimating the LSTM components
caused a 7.2 percentage point decrease (to 87.1%),
highlighting the necessity of temporal modeling. The
hybrid architecture outperformed simple concatena-
tion by 3.4 percentage points. Individual CNN lay-
er analysis revealed that removing the third convo-
lutional layer (256 filters) caused the largest impact
(4.9 percentage point decrease), indicating deeper
features were crucial for complex pattern recogni-
tion. Feature engineering ablation showed the impor-
tance of multi-modal feature extraction. Using only
time-domain features achieved 89.7% accuracy, while
frequency-domain features alone reached 86.3%.
The combined approach was superior [15]. Tempo-
ral windowing analysis revealed optimal performance
with window sizes of 60-90 minutes and a 50% over-
lap ratio. Hyperparameter sensitivity analysis con-
firmed the robustness of the optimized configuration,
with performance maintained within 1.5 percentage
points of optimal values for learning rates between

0.0005-0.002 and batch sizes between 32-128.

Table 3. Cross-facility generalization performance of the hybrid CNN-LSTM framework evaluated across three industrial facilities

with distinct operational characteristics and equipment portfolios

Facility/Scenario Accuracy  Precision Recall F1-Score  Equipment Count Failure Events
Dammam Facility 95.1% 93.4% 96.8% 95.1% 45 1,287
Jubail Facility 93.8% 92.1% 95.6% 93.8% 38 1,156
Ras Al-Khair Facility 94.0% 92.5% 95.9% 94.2% 44 1,009
Cross-Facility (Dammam-Jubail) 91.7% 89.8% 93.4% 91.6% 38 1,156
Cross-Facility (Dammam-Ras Al-Khair) 92.3% 90.5% 94.1% 92.3% 44 1,009
Cross-Facility (Jubail>Dammam) 92.1% 90.2% 94.0% 92.1% 45 1,287
Cross-Facility (Jubail>Ras Al-Khair) 91.5% 89.4% 93.7% 91.5% 44 1,009
Cross-Facility (Ras Al-Khair>Dammam) 92.5% 90.7% 94.3% 92.5% 45 1,287
Cross-Facility (Ras Al-Khair-Jubail) 91.9% 90.0% 93.8% 91.9% 38 1,156
Multi-Facility Combined 94.3% 92.7% 96.1% 94.4% 127 3,452
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Figure 3. Comprehensive ablation study results for the hybrid CNN-LSTM framework. (a) Component contribution analysis showing
performance impact of removing individual architectural elements. (b) Feature engineering approach comparison including time-
domain, frequency-domain, and combined feature sets. (c) Temporal windowing strategy evaluation with different window sizes and
overlap configurations. (d) Hyperparameter sensitivity analysis for learning rate, batch size, and network architecture parameters.

4.6 Data Integration Framework Performance
and Real-Time Processing Capabilities

To validate the data integration framework, per-
formance was tested under various operational loads.
Figure 4 presents the analysis.

The framework demonstrated exceptional re-
al-time capabilities, with a sustained throughput of
2.4 million data points per hour and a peak of 3.8
million. The distributed edge computing architecture
processed 89.3% of the computational load locally.
End-to-end processing latency averaged 12.7 mil-
liseconds, well within the 50-millisecond industrial
requirement. System reliability was robust, with data
loss rates below 0.03% and network communication
failures below 0.1%. Scalability testing showed linear
performance up to 200 monitored units per facility,
with substantial capacity for future expansion. Data
mtegration efficiency analysis revealed optimal re-
source utilization, with edge nodes averaging 729%
CPU utilization and central servers at 58%. The
framework successfully integrated heterogeneous

sensor protocols with 99.7% translation rates and

maintained sub-millisecond temporal synchroniza-
tion [20].

4.7 Multi-Layer Architecture Optimization
and Temporal Pattern Recognition

To demonstrate the effectiveness of the mult-lay-
er architecture, a comprehensive analysis of its hier-
archical feature extraction and temporal modeling
was conducted. Table 4 presents the analysis ol the
architecture's components.

The multi-layer CNN architecture demonstrated
progressive feature abstraction, with each layer in-
crementally contributing to accuracy [21], [23]. The
third layer reached 87.4% accuracy by identifying
complex spatial patterns. Temporal pattern analysis
revealed the critical importance of the dual LSTM
architecture. The first LSTM layer modeled short-
term events with a 75-minute receptive field, while the
second extended this to 150 minutes for long-term
trends, achieving 92.3% accuracy. Architecture opti-
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Figure 4. Data integration framework performance evaluation for real-time sensor stream processing. (a) Data throughput analysis
across varying sensor configurations and sampling rates. (b) End-to-end processing latency measurements from acquisition to
prediction under different system loads. (c) System reliability assessment including data loss rates and communication stability. (d)
Scalability analysis demonstrating framework performance with increasing equipment monitoring loads.

Table 4. Multi-layer CNN-LSTM architecture optimization results showing layer-wise feature extraction performance, temporal
pattern recognition capabilities, and convergence characteristics across different network depths and configurations

Pattern Training
. . Feature Temporal o
Architecture Component Layer Configuration . . . HE— Recognition Convergence
Dimensionality Receptive Field
Accuracy (Epochs)
CNN Layer 1 64 filters, 3x1 kernel 1,024 > 768 N/A 73.2% 45
CNN Layer 2 128 filters, 3x1 kernel 768 > 512 N/A 81.7% 38
CNN Layer 3 256 filters, 3x1 kernel 512> 256 N/A 87.4% 32
LSTM Layer 1 128 hidden units 256 > 128 75 minutes 89.1% 28
LSTM Layer 2 64 hidden units 128 > 64 150 minutes 92.3% 24
Integration Layer Dense 32 units 64 > 32 150 minutes 94.3% 22
Comparison: Shallow CNN 2 layers, 64 filters 1,024 > 256 N/A 79.8% 52
Comparison: Single LSTM 256 hidden units 256 > 256 100 minutes 85.6% I
Comparison: Deep CNN 5 layers, 512 filters 1,024 > 128 N/A 88.9% 67

mization showed the multi-layer design significantly
outperformed shallow (79.8% accuracy) and exces-
sively deep (88.9% accuracy) alternatives. The hier-
archical feature extraction was validated through visu-
alization, showing that early layers learned low-level

features while deep layers captured high-level degra-

dation signatures. The framework's automated fea-

ture extraction (87.49% accuracy) outperformed tra-

ditional manual feature extraction (84.7% accuracy).
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4.8 Feature Importance and Model
Interpretability

Understanding the relative importance of differ-
ent sensor modalities and temporal patterns is crucial
for practical deployment and maintenance strategy
optimization. Feature importance analysis was con-
ducted using integrated gradients and attention weight
visualization to 1dentify the most discriminative mdi-
cators of equipment degradation. These rankings
substantiate the sensor-suite design: vibration-derived
mdicators dominate short-horizon sensitivity, tem-
perature gradients and current harmonics contribute
complementary long-horizon and non-mechanical
observability, and cross-modal correlations reduce
confounding—together enabling the reported 48-
hour lead time at low false-positive rates [33]. Table
5 presents the quantitative feature importance rank-
ings across sensor modalities and temporal charac-
teristics. T'o make explanations actionable, this study
renders per-event “explanation cards” in the CMMS:
the card lists the top-ranked features with their re-
cent trend, the implicated subsystem (e.g., bearings,
lubrication, electrical supply), and a short checklist
(inspect coupling alignment; verify lubrication; check
phase imbalance). Cross-modal attributions (e.g.,
vibration + temperature-gradient) are highlighted to
distinguish progressive degradation from transient
disturbances. In practice, these cards accompany Ac-
tion-required alerts and guide triage, while Advisory
alerts expose the same fields for monitoring without
immediate work-order execution [35].

Vibration-based features demonstrated the high-
est predictive mmportance, with RMS acceleration
achieving the maximum importance score of 0.342.
This finding aligned with established mechanical
engineering principles, as vibration patterns pro-
vide early indication of bearing wear, misalighment,
and structural degradation. Peak-to-peak amplitude
(importance score 0.287) captured transient events
and mmpact-related failures, while spectral centroid
(0.198) 1dentified frequency distribution shifts asso-
ciated with developing mechanical faults. Thermal
features ranked prominently in the importance hi-
erarchy, with temperature gradient (0.251) provid-
g more discriminative information than absolute
temperature values (0.152). The gradient-based ap-
proach captured dynamic thermal changes associated
with friction increases, lubrication degradation, and
thermal cycling effects. This finding validated the so-
phisticated feature engineering approach employed
i the framework. Electrical signature analysis con-
tributed substantial predictive value through current
harmonic distortion (0.234) and RMS current mea-
surements (0.143). Harmonic distortion patterns in-
dicated motor winding degradation, bearing electrical
faults, and power quality issues affecting equipment
operation. The temporal sensitivity analysis revealed
that electrical features provided consistent long-term
trend information complementing the high-frequen-
cy mechanical idicators. Multi-sensor correlation
features (importance score 0.089) demonstrated the
value of cross-modal analysis in capturing complex
failure modes mvolving multiple equipment sub-

Table 5. Feature importance analysis showing the relative contribution of different sensor modalities, temporal patterns, and derived
features to failure prediction accuracy in the hybrid CNN-LSTM framework

Feature Category Feature Type Importance Score Rank Temporal Sensitivity
Vibration Features RMS Acceleration 0.342 1 High
Vibration Features Peak-to-Peak Amplitude 0.287 2 High
Thermal Features Temperature Gradient 0.251 3 Medium
Electrical Features Current Harmonic Distortion 0.234 4 Medium
Vibration Features Spectral Centroid 0.198 5 High
Acoustic Features High-Frequency Energy 0.176 6 Low
Pressure Features Pressure Variance 0.165 7 Medium
Thermal Features Absolute Temperature 0.152 8 Low
Electrical Features Current RMS 0.143 9 Medium
Vibration Features Frequency Domain Peak 0.139 10 High
Acoustic Features Acoustic Emission Rate 0.127 n Low
Pressure Features Absolute Pressure 0.118 12 Low
Electrical Features Voltage Fluctuation 0.095 13 Low
Derived Features Multi-sensor Correlation 0.089 14 Medium
Temporal Features Trend Coefficient 0.076 15 High
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systems. The relatively lower mdividual importance
reflected the distributed nature of correlation infor-
mation across multiple sensor combinations rather
than reduced relevance. Temporal pattern analysis
revealed distinct sensitivity characteristics across fea-
ture categories [41]. Vibration features showed high
temporal sensitivity with rapid changes preceding
failures, acoustic features demonstrated low temporal
sensitivity providing baseline condition assessment,
and electrical features exhibited medium temporal
sensitivity with gradual degradation patterns [35].

4.9 Economic Impact Assessment

The practical value of predictive maintenance sys-
tems Is ultimately measured by their economic im-
pact on manufacturing operations. Consistent with
the methodology described i Methodology, the
economic evaluation contrasted a 6-month pre-im-
plementation baseline (January-June 2023) with
a 9-month post-implementation period (October
2023-June 2024), excluding the 3-month transition
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(July-September 2023). Monetary benelits were
annualized by a factor of 12/9 for return-on-invest-
ment and payback computations. Comprehensive
cost-benefit analysis then compared maintenance
costs, downtime expenses, and OELE across these
windows. Figure 5 presents the economic impact as-
sessment across three panels quantifying the financial
benefits of the hybrid CNN-LSTM predictive main-
tenance framework. Figure ba displays the compari-
son of maitenance costs before and after implemen-
tation across the three participating facilities. Figure
5b shows the reduction in unplanned downtime and
associated production losses. Figure 5c illustrates the
overall equipment effectiveness improvement and re-
turn on mvestment calculations.

Maintenance cost analysis revealed substantial
economic benefits across all participating facilities
[12]. Total maintenance costs decreased by an av-
erage of 28% following framework implementation,
with the largest reductions observed in unplanned
maintenance activities (47% decrease). The Dam-
mam facility achieved the greatest cost savings (32%
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Figure 5. Economic impact assessment of the hybrid CNN-LSTM predictive maintenance framework. (a) Maintenance cost
comparison showing planned versus unplanned maintenance expenses before and after implementation. (b) Downtime reduction
analysis quantifying production loss prevention across different equipment categories. (c) Overall equipment effectiveness
improvement and return on investment metrics demonstrating financial benefits.
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reduction) due to the high cost of emergency repairs
in continuous process operations. Planned mainte-
nance costs increased by 12% as preventive interven-
tions replaced reactive repairs, but this increase was
more than offset by the dramatic reduction in emer-
gency maintenance expenses. Unplanned downtime
reduction represented the most significant economic
benefit, with average downtime decreasing by 37%
across all monitored equipment. Production loss
prevention varied by equipment category, with ro-
tating machinery showing the greatest improvement
(429% downtime reduction) followed by precision
manufacturing equipment (35% reduction) and ma-
tertal handling systems (31% reduction). The mon-
etary value of downtime reduction was calculated
based on facility-specific production rates and prof-
it margins, yielding average savings of $2.3 million
annually across the three facilities. OEE improve-
ments demonstrated the comprehensive operational
benefits of predictive maintenance implementation.
Average OELE increased from 73.29% to 84.19% (15%
improvement), with availability improvements con-
tributing 8.7 percentage points, performance rate im-
provements adding 1.8 percentage points, and quality
rate enhancements providing 0.6 percentage points.
The availability improvements directly reflected re-
duced unplanned downtime, while performance rate
gains resulted from optimized maintenance sched-
uling and reduced degraded operation periods. Re-
turn on investment analysis calculated the framework
implementation costs including sensor installation,
software development, training, and operational ex-
penses against the quantified benefits. The total im-
plementation cost across all three facilities was $1.87
million, while annual benefits totaled $3.42 million,
yielding a return on investment of 183% in the first
year. The payback period was calculated at 6.5
months, demonstrating rapid cost recovery typical of
successful predictive maintenance implementations.
Consistent with the methodology [12], the imple-
mentation cost I = $1.87 million consisted of sensors/
installation ($0.82M), compute/networking ($0.29M),
software integration ($0.54M), and training/change
management ($0.22M). Sensitivity analyses tied to
equations (13)-(17) showed that varying V by +25%
changed annualized benefits from $3.42M to a range
of $3.00M-$3.85M, yielding ROI = 16196-206% and
payback = 5.8-7.4 months. Varying model operating
points by +2 percentage points recall around 96.19%
and =1 percentage point false-positive rate around
2.19% produced benefits of $3.02M-$3.88M (ROI
= 162%-208%; payback = 5.8-7.3 months). Includ-
ing a recurring support cost of $0.20M/year (booked

as OpEx) implies ROI = 172% and payback = 7.0
months. These ranges indicate that the reported
1839% ROI and 6.5-month payback are stable un-
der reasonable economic and operational variation.
Secondary economic benefits included improved
maintenance planning efficiency (23% reduction in
maintenance labor hours), extended equipment lifes-
pan (estimated 189% increase based on reduced fail-
ure severity), and enhanced safety performance (319%
reduction i maintenance-related safety incidents).
These additional benefits, while more difficult to
quantify precisely, contributed substantially to the
overall economic value proposition.

4.10 Statistical Validation and Significance
Testing

Rigorous statistical validation was conducted to
establish the significance and reliability of the report-
ed performance improvements. The validation em-
ployed both parametric and non-parametric statisti-
cal tests appropriate for the data characteristics and
comparison scenarios. Table 6 presents the compre-
hensive statistical validation results including signifi-
cance tests, effect sizes, and confidence intervals for
all major findings.

All primary performance comparisons demon-
strated statistical significance with p-values < 0.001,
providing strong evidence for the superiority of the
hybrid CNN-LSTM approach [12]. McNemar's test
results confirmed significant improvements over all
baseline methods, with the largest effect sizes observed
for comparisons against traditional threshold-based
monitoring (Cohen's d = 2.31) and conventional
machine learning approaches (Cohen's d = 1.86-
1.92). The effect sizes for deep learning comparisons
(CNN only: d =1.24, LSTM only: d = 1.08) indicated
substantial practical significance beyond statistical sig-
nificance. Cross-facility validation revealed statistical-
ly significant but practically acceptable performance
degradation when applying models across different
manufacturing environments (p = 0.003, Cohen's d =
0.34). The small to medium effect size indicated that
while cross-facility performance differences were de-
tectable, they remained within acceptable bounds for
practical deployment. ANOVA results showed no
significant variation in baseline performance across
facilities (p = 0.118), confirming that performance dif-
ferences reflected transfer learning challenges rather
than fundamental facility-specific factors. Economic
mmpact validation employed non-parametric tests due
to non-normal cost distributions typical in industrial
settings. Wilcoxon signed-rank tests confirmed signif-
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Table 6. Statistical validation results for the hybrid CNN-LSTM framework performance improvements, including significance tests,
effect sizes, and confidence intervals for comparisons with baseline methods and economic impact metrics.

Comparison Statistical Test Test Statistic ~ p-value  Effect Size (Cohen's d) 95% ClI
Performance Metrics

Hybrid vs. Random Forest McNemar's Test x2=2,847.3 <0.001 1.86 [1.79,1.93]
Hybrid vs. SVM McNemar's Test ¥2=2,9217 <0.001 1.92 [1.85,1.99]
Hybrid vs. CNN Only McNemar's Test x2=1567.2 <0.001 1.24 [1.18,1.30]
Hybrid vs. LSTM Only McNemar's Test x2=1289.4 <0.001 1.08 [1.02,1.14]
Hybrid vs. Threshold McNemar's Test x2=4,123.8 <0.001 2.31 [2.23,2.39]
Cross-Facility Validation

Within vs. Cross-Facility Paired t-test t=3.72 0.003 0.34 [0.12,0.56]
Facility Performance Variation ANOVA F=2.18 0.118 - -
Economic Impact

Maintenance Cost Reduction Wilcoxon Signed-Rank W = 4,267 <0.001 1.54 [1.47,1.61]
Downtime Reduction Wilcoxon Signed-Rank W = 3892 <0.001 1.43 [1.36, 1.50]
OEE Improvement Paired t-test t=8.94 <0.001 1.78 [1.69,1.87]
Temporal Performance

Lead Time Consistency One-sample t-test t=147 <0.001 - [45.8, 48.6]
Prediction Stability Levene's Test F=143 0.231 - -

icant improvements in both maintenance cost reduc-
tion (p < 0.001, d = 1.54) and downtime reduction
(p <0.001, d = 1.43). The large elfect sizes indicated
that economic benefits were not only statistically sig-
nificant but also practically meaningful for industrial
operations. Bootstrap confidence intervals were cal-
culated using 1,000 resampling iterations to provide
robust uncertainty estimates for all performance met-
rics. The narrow confidence intervals (typically + 0.3-
0.7 percentage points for accuracy metrics) indicat-
ed high precision in performance estimates despite
the temporal and cross-facility validation challenges.
Time-series aware cross-validation using expanding
windows confirmed prediction stability over time
with no significant performance degradation across
the 18-month study period (Levene's test: p = 0.231).
The temporal lead time analysis demonstrated con-
sistent 48-hour advance warning capability with nar-
row confidence mtervals [45.8, 48.6 hours|, validat-
g the practical reliability of the prediction timing.
Multiple comparison corrections using the Bonfer-
roni method maintained statistical significance for all
primary comparisons (adjusted o = 0.005), confirm-
ing that the reported improvements were robust to
multiple testing considerations. The comprehensive
statistical validation provided strong evidence sup-
porting the practical and statistical significance of the
hybrid CNN-LSTM predictive maintenance frame-
work across all evaluated dimensions [34].

This work used data from three Saudi Arabian
faciliies and four equipment strata under an IloT

architecture with continuous sensing. The design im-
proves internal consistency yet introduces geograph-
ic and nstrumentation constraints; generalization
beyond similarly mstrumented contexts should be
demonstrated prospectively. Although transport-lay-
er loss was low (< 0.03%) and overall missingness
modest (2.1%), operational outages can induce
non-random missingness that imputation cannot ful-
ly remove [27]. Sensor modalities differ in their noise
envelopes: acoustic emission 1is susceptible to ambi-
ent and impact noise, infrared measurements can ex-
hibit thermal lag under fast transients, and electrical
signatures reflect load and power-quality variations.
The pipeline addressed these risks via edge-level
validation, explicit outlier handling, and a learning
setup that emphasizes robust, multi-modal patterns;
In practice, feature-importance analyses align with
this expectation by showing dominant contributions
from vibration-derived indicators with complemen-
tary value from temperature gradients and electrical
harmonics. Finally, failures are rarer than normal
operation; class-weighting mitigates imbalance during
traming, but some influence on precision-recall
trade-offs may persist at fixed lead times. None of
these considerations change the reported estimates;
they delineate the conditions under which the results
are most reliable and where future extensions (e.g.,
explicit sensor-health modeling and missing-not-at-
random diagnostics) would further strengthen appli-
cability [39].
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5. Conclusions

This 1nvestigation successfully developed and
validated a novel hybrid CNN-LSTM framework
for predictive maintenance across 127 industrial ma-
chines and 1.2 million sensor measurements over 18
months, demonstrating substantial improvements in
failure prediction accuracy and economic impact.
The hybrid CNN-LSTM f[ramework achieved 94.3%
accuracy (95% CI: [93.8%, 94.8%)]), 92.7% precision,
and 96.1% recall, substantially exceeding the 80%
industrial threshold. The framework maintained
2.19% false positive and 3.9% false negative rates,
with AUC-ROC of 0.987. Comparative analysis
demonstrated statistically significant superiority over
all baseline methods. The hybrid approach outper-
formed Random Forest by 15.4 percentage points (p
<0.001, Cohen's d = 1.86), Support Vector Machines
by 15.1 percentage points (p < 0.001, Cohen's d =
1.92), and threshold-based monitoring by 25.9 per-
centage points (p < 0.001, Cohen's d = 2.31). The
mtegrated architecture surpassed standalone LSTM
by 7.0 percentage points and CNN-only by 8.6 per-
centage points, validating synergistic benefits. Tem-
poral prediction capabilities showed 78.6% of fail-
ures correctly predicted 48+ hours in advance, with
mean lead time of 47.2 hours (95% CI: [45.8, 48.6]).
The data integration framework processed 2.4 mil-
lion data points per hour with 12.7 milliseconds end-
to-end latency and <0.03% data loss rates. Cross-fa-
cility validation confirmed robust generalization with
only 2-3 percentage point degradation across differ-
ent manufacturing environments (91.59-92.5% vs.
93.89-95.19% within-facility accuracy). Economic as-
sessment revealed 28% maintenance cost reduction,
379% downtime decrease, and 15% Overall Equip-
ment Effectiveness improvement (73.29% to 84.19%).
Return on investment reached 183% with 6.5-month
payback period.

While these results indicate enterprise-scale vi-
ability, mdustrial rollouts encounter practical chal-
lenges—data readiness and consistent failure taxono-
mies, partial sensorization, legacy system integration,
concept drift, alarm management, network reliabil-
ity, cybersecurity, ROI sensitivity, and regulatory
constraints. Consistent with the design choices and
cross-facility results in this work, we recommend a
risk-based sensor strategy, standardized IloT inter-
faces, monitored model lifecycle management with
shadow deployments, tiered alerting with interpret-
ability, authenticated low-loss streaming with edge
validation, and site-specific sensitivity analyses. These
measures are intended to preserve the reported 48-

hour warning horizon and low false-positive rates
while supporting sustainable adoption across hetero-
geneous facilities. The findings establish hybrid deep
learning architectures' superiority over traditional ap-
proaches for industrial predictive maintenance. The
substantial performance improvements and robust
cross-facility generalization indicate that the frame-
work captures universal equipment degradation
patterns, supporting broader industrial applicability.
The demonstrated real-time processing capabilities
and economic validation provide empirical evidence
for enterprise-scale deployment viability.

Study lmitations include the 18-month evalua-
tion period, geographic constraint to Saudi Arabian
facilities, and focus on specific equipment categories.
Future research should pursue extended longitudinal
studies, multi-regional validation, advanced sensor
fusion methodologies, and explainable Al develop-
ment for enhanced mdustrial adoption. To guide
deployment at scale, future work will operationalize
sensor-health diagnostics, domain-adaptation rou-
tines, and edge-aware model variants to sustain the
48-hour warning horizon under sensor anomalies,
environmental shifts, and fleet growth. In addition,
while stratified sampling and proportional alloca-
tion were used to enhance representativeness across
equipment classes within the three IloT-enabled fa-
cilities, external validity beyond similarly instrument-
ed industrial contexts should be established in future
work. This study’s evidence i1s bounded by (1) sen-
sor health assumptions—undetected drift, calibration
bias, and intermittent faults can perturb feature distri-
butions and inflate false positives at fixed lead time;
(1) environmental variability—temperature/humidity
excursions, electromagnetic interference, and rapid-
ly shifting product mixes can induce non-stationarity
that challenges stable thresholds and model calibra-
tion; and (i) scalability constraints—site-to-site het-
erogenelty, uneven network quality, and edge com-
pute quotas may limit transferability and sustained
real-time performance as the monitored fleet grows.

Building on these findings, next steps include: (1)
sensor-health modeling (self-calibration tests, redun-
dancy checks, and drift detectors integrated as inputs
to reduce false positives during sensor anomalies); (2)
adaptive generalization (domain adaptation and pe-
riodic fine-tuning with shadow deployments to track
regime shifts and product-mix changes); (3) scalable
orchestration (hierarchical, edge-aware scheduling
and lightweight model variants for constrained nodes,
with resource monitors to preserve latency budgets);
(4) robustness to environment (augmentation with
ambient/context channels and stress-testing under
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mduced noise/EMI); and (5) learning under weak
labels (semi-/self-supervised updates fed by CMMS
outcomes to improve rare-failure recall without ex-
panding annotation burden).
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