
Deep Learning Enhanced Predictive Maintenance 
Framework Using Industrial Internet of Things 
Sensors for Smart Manufacturing Systems

Manufacturing systems generate massive sensor data, yet transforming this information into 
actionable maintenance insights remains challenging due to traditional threshold-based ap-
proaches suffering from high false positive rates and insufficient advance warning. This study 
developed and validated a hybrid deep learning framework combining convolutional neural 
networks for spatial feature extraction with long short-term memory networks for temporal 
pattern recognition in smart manufacturing environments. The methodology involved col-
lecting 18 months of operational data from 127 industrial machines across three Saudi Ara-
bian facilities, encompassing 1.2 million sensor readings and 3,452 maintenance events from 
vibration, temperature, current, pressure, and acoustic sensors. The hybrid CNN-LSTM 
framework achieved 94.3% accuracy in predicting equipment failures 48 hours in advance 
with a 2.1% false positive rate, demonstrating statistically significant superiority over Random 
Forest (15.4 percentage point improvement), Support Vector Machines (15.1 percentage 
points), and threshold-based monitoring (25.9 percentage points). Significance was assessed 
on paired predictions using McNemar’s test (two-sided, alpha = 0.05) with Bonferroni correc-
tion across model comparisons; improvements were significant (p < 0.001). Cross-facility val-
idation confirmed robust generalization capabilities. Economic analysis revealed 28% main-
tenance cost reduction, 37% unplanned downtime decrease, and 15% overall equipment 
effectiveness improvement, yielding 183% return on investment with a 6.5-month payback 
period. These findings demonstrate the practical viability and substantial economic bene-
fits of hybrid deep learning approaches for industrial predictive maintenance, establishing a 
foundation for enhanced operational efficiency in Industry 4.0 manufacturing systems.  
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1. Introduction

The arrival of Industry 4.0 has re-written the rules 
of manufacturing, embedding smart production sys-
tems so deeply into factory life that they now func-
tion as the principal levers of operational excellence 
and sustained competitive advantage [1]. Within 
these intelligent environments—where cyber-physical 
systems, high-density sensor meshes and industri-
al-grade analytics operate as a single, self-reinforcing 
organism—plant assets generate operational data at a 
scale and velocity that would have been inconceivable 
even a decade ago [2]-[4]. Yet the same data deluge 
intensifies an old headache: unplanned downtime, 
whose bill can easily reach hundreds of thousands 
of pounds per day on a single integrated line [5], [6]. 
Reactive maintenance—the habitual “fix-it-when-it-
breaks” reflex—still absorbs anywhere between 15 % 
and 60 % of total operating expenditure and is man-
ifestly unfit for capital-intensive, tightly coupled pro-
duction systems [7].

The Industrial Internet of Things (IIoT) now 
offers a practicable escape route. By overlaying 
machines with distributed sensor fabrics, the IIoT 
turns once-silent assets into loquacious informants, 
streaming condition data in real time and making 
the leap from rigid, calendar-based servicing to ev-
idence-driven, predictive intervention technically 
and economically feasible [8]-[10]. Market sentiment 
confirms the strategic gravity of this shift: the glob-
al predictive-maintenance sector grew from roughly 
USD 4.5 billion in 2020 to a forecast USD 15 bil-
lion by 2030 [11]. Empirical audits of early-adopter 
plants show maintenance-cost contractions of 14–30 
%, unplanned-downtime reductions of 20–45 % and 
overall-equipment-effectiveness gains of 15–25 % 
once predictive modules are embedded in the manu-
facturing-execution layer [12].

The primary aim of this research is to develop and 
validate a novel hybrid deep learning framework that 
integrates Convolutional Neural Networks (CNN) 
with Long Short-Term Memory (LSTM) networks 
for real-time predictive maintenance, achieving su-
perior failure prediction accuracy with sufficient ad-
vance warning for effective maintenance planning. 
The research pursues four specific objectives:

•	 Design and implement a multi-layer CNN-
LSTM architecture optimized for high-dimen-
sional, time-series sensor data.

•	 Develop a comprehensive data integration 
framework to seamlessly process real-time sen-
sor streams from IIoT-enabled systems.

•	 Validate the proposed framework across mul-
tiple manufacturing facilities and equipment 
types to demonstrate robustness and general-
izability.

•	 Quantify the economic and operational bene-
fits through comparative analysis with tradition-
al and conventional machine learning methods.

2. Literature review

Contemporary practice, however, remains an-
chored in threshold-based condition monitoring: a 
single sensor stream—most commonly vibration—is 
compared against static limits (for instance, the ISO 
10816 alert thresholds of 0.2, 0.5 and 1.0 in s⁻¹ peak) 
and a work-order is raised the instant a boundary is 
breached [13]-[16]. Such schemes are serviceable 
for flagging overt degradation, yet they systematical-
ly over-alert, offer no estimate of residual useful life 
and provide lead times measured in hours rather 
than days [17]. Companion techniques—motor-cur-
rent-signature analysis, infrared thermography, 
oil-debris counting—broaden the diagnostic palette 
but still fail to translate multi-domain signatures into a 
forward-looking maintenance schedule [18], [19]. In 
truth, these systems are “condition-based-reactive”: 
they confirm that damage has already progressed 
substantially before any warning is issued [20], [21]. 
Human experts remain in the loop to set and peri-
odically retune thresholds, introducing site-specific 
variability and the persistent risk of missed incipient 
faults [22].

Notwithstanding their ubiquity, legacy predic-
tive-maintenance frameworks buckle under five 
Industry-4.0 realities. First, heterogeneous, multi-
rate IIoT streams and intermittent sensing expose 
cross-modal interactions that single-signal or stat-
ic-threshold schemes cannot capture reliably. Sec-
ond, non-stationary operating regimes and shifting 
product mixes induce concept drift that degrades 
fixed-feature models and threshold settings over 
time. Third, failures are rare relative to normal oper-
ation while advance-warning requirements are strin-
gent, making it difficult to achieve high recall at low 
false-positive rates simultaneously. Fourth, facility- 
and equipment-specific behaviors limit transferabil-
ity, so models tuned at one site often underperform 
elsewhere without explicit temporal modelling and 
adaptation. Fifth, real-time edge-to-cloud integra-
tion imposes tight latency and reliability constraints, 
where alarm fatigue from false positives erodes op-
erator trust. As summarized in Table 1, these fac-
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tors explain the limited lead times and elevated false 
alarms observed for traditional and conventional ma-
chine-learning approaches and motivate the hybrid 
CNN–LSTM design evaluated in this study.

Machine-learning augmentation has undoubted-
ly sharpened failure-prediction performance. Ran-
dom Forest, Support Vector Machine and k-Near-
est-Neighbour classifiers regularly deliver 75–85 % 
accuracy on curated feature sets [23]-[25]. Yet these 
algorithms demand laborious manual feature en-
gineering and struggle to internalize the long-range 
temporal dependencies that characterize slowly 
evolving mechanical degradation [26]. Deep-learn-
ing architectures promise a more frictionless route. 
CNNs automatically distil salient spatial patterns from 
multi-dimensional sensor images, whereas LSTM 
networks specialize in capturing sequential correla-
tions and long-term drift [27]-[29]. Well-regularized 
deep models routinely exceed 90 % prediction accu-
racy and furnish actionable warnings 48–72 h before 
functional failure [30]. Combining CNN and LSTM 
modules in a single end-to-end pipeline harnesses the 
complementary strengths of both paradigms: convo-
lutional layers act as adaptive feature extractors, while 
subsequent LSTM stages model the temporal evolu-
tion of the learned representations [31]. Wahid et al. 
[32] reported 94.3 % accuracy for such a hybrid, out-
performing constituent network in isolation. Gaurav 
et al. [33] further demonstrated that the same archi-
tecture drives the false-positive rate down to 2.1 % 
while preserving high sensitivity.

The IIoT data landscape makes these perfor-
mance gains practically relevant. A modern, fully 

connected plant produces on the order of 850 GB 
of sensor data per day; individual assets are instru-
mented with 100–500 channels; edge nodes filter and 
forward salient signatures within milliseconds, while 
elastic cloud tiers provide the GPU-backed muscle 
required to train million-parameter models overnight 
[34]-[37]. Table 1 collates and contrasts the predic-
tive-maintenance literature, charting the discipline’s 
trajectory from rule-of-thumb thresholds to the hy-
brid CNN–LSTM architectures that form the empir-
ical core of the present investigation.

Notwithstanding the considerable progress 
achieved to date, three substantive lacunae continue 
to frustrate the field. First, the literature contains only 
a handful of systematic enquiries into the optimal way 
the representational strengths of CNNs and LSTM 
architectures can be fused when confronted with 
the high-dimensional, multi-modal sensor streams 
generated by contemporary manufacturing systems 
[32]. Second, most extant implementations have 
been validated on narrow subsets of plant equipment 
and under restricted operating regimes, thereby leav-
ing their broader generalizability open to legitimate 
doubt [18], [30]. Third, scholars have yet to furnish 
adequate solutions to the tension between sustaining 
high diagnostic accuracy and suppressing false-posi-
tive alarms, while the real-time coupling of sensor-da-
ta processing with predictive analytics remains strik-
ingly under-explored—an omission that continues to 
impede confident industrial uptake [10].

The decision to adopt a hybrid CNN-LSTM to-
pology is motivated by the complementary nature of 
the two constituent paradigms. To be explicit, the 

Category Reference Methodology Accuracy Lead Time Key Limitations

Traditional 
Threshold-Based

[38] Vibration Analysis + 
ISO 10816 68-75% 6-12 hours High false positives, limited lead time

[39] Motor Current Analysis 70-78% 8-16 hours Reactive nature, manual threshold 
setting

Machine Learning
[40] Random Forest + 

Feature Engineering 82-85% 24-36 hours Manual feature selection, limited 
temporal modeling

[41] SVM + Multi-sensor 
Fusion 79-83% 18-30 hours Poor scalability, computational 

complexity

Deep Learning - 
Single Architecture

[42] CNN-based Feature 
Extraction 87-90% 36-48 hours Limited temporal dependency capture

[43] LSTM Sequence Modeling 85-88% 42-54 hours Challenges with spatial feature 
extraction

Hybrid CNN-LSTM
[44] CNN + LSTM Multi-layer 94.3% 48-72 hours High computational requirements

[45] Conv-LSTM Architecture 92.8% 45-60 hours Complex parameter tuning

Present Study This Work Multi-layer CNN-
LSTM + IIoT 94.3% 48 hours Novel hybrid architecture with 

enhanced performance

Table 1. Comparative analysis of predictive maintenance literature
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present study deploys CNN strata to learn shift-tol-
erant, cross-modal features that attenuate spurious 
transients, and stacks LSTM layers thereafter to cap-
ture degradation trajectories that unfold across multi-
ple hours; the conjoined objective is to secure a low 
false-positive rate at a fixed 48-hour prognostic hori-
zon while preserving recall under non-stationary op-
erating conditions. CNNs are demonstrably adept at 
isolating spatial regularities within multi-sensor data 
panels [44], whereas LSTMs exhibit superior capac-
ity for modelling long-range temporal dependencies 
and slowly evolving degradation signatures [31]. The 
proposed integration therefore furnishes a unified 
conduit for the simultaneous treatment of spatial 
and temporal structure inherent in IIoT data. In 
contradistinction to conventional machine-learning 
pipelines, which demand laborious manual feature 
engineering, the hybrid framework exploited here 
capitalizes upon the automatic representation-learn-
ing capabilities intrinsic to deep learning [32]. The 
multi-layered realization facilitates hierarchical fea-
ture extraction, thereby recovering both low-level 
sensor motifs and high-level prognostic markers of 
incipient failure. The incorporation of on-the-fly data 
processing directly answers the industry’s imperative 
for timely failure anticipation [22].

3. Methodology

3.1 Study Design and Setting

This research employed a longitudinal observa-
tional study to validate a hybrid deep learning frame-
work. The investigation was conducted across three 
industrial manufacturing facilities in the Eastern Prov-
ince of Saudi Arabia: the King Fahd Industrial Port in 
Dammam, the Jubail Industrial City, and the Ras Al-
Khair Industrial Complex. These sites were selected 
for their advanced Industry 4.0 implementations and 
diverse equipment portfolios. This study defined the 
sampling frame as all production assets at the three 
participating facilities that could be instrumented with 
the full sensor suite and continuously observed during 
the 18-month window. Inclusion criteria were: (i) op-
eration for at least 12 of the 18 months; (ii) feasibility 
of installing tri-axial vibration, infrared temperature, 
current, pressure, and acoustic emission sensing; (iii) 
secure connectivity supporting MQTT (streaming) 
and OPC-UA (historical access); and (iv) complete 
Computerized Maintenance Management System 
(CMMS) and Enterprise Resource Planning (ERP) 
logs for the observation window. Exclusion criteria 

were: (i) assets under commissioning/decommission-
ing; (ii) units with restricted firmware/interfaces pre-
cluding instrumentation; (iii) intermittently used assets 
with duty cycles dominated by idle states; and (iv) assets 
missing any required sensor modality. A prospective 
data collection initiative spanned 18 months (January 
2023 to June 2024), capturing seasonal variations and 
diverse maintenance scenarios. The research proto-
col adhered to industrial data collection standards and 
received approval from facility management, with all 
procedures maintaining strict confidentiality and fol-
lowing industrial IoT security protocols.

3.2 Data Collection and Acquisition

This study collected operational data prospective-
ly and continuously over 18 months (January 2023–
June 2024) from three industrial facilities in the East-
ern Province of Saudi Arabia under facility-approved 
protocols. Data acquisition was fully automated via an 
IIoT architecture. Each monitored machine was in-
strumented with tri-axial accelerometers, non-contact 
infrared temperature sensors, current transformers, 
pressure transducers, and acoustic emission sensors. 
High-frequency vibration and acoustic streams were 
sampled at 10 kHz in 10-s windows every 15 min; 
temperature, pressure, and current were sampled at 
1 Hz and aggregated to 1-min values. Timestamped 
streams were transmitted in real time using MQTT 
over TLS (for streaming) and OPC-UA (for historical 
retrieval), with edge nodes performing signal valida-
tion and preliminary feature extraction prior to cen-
tralized storage and modeling. Across 127 machines, 
this yielded approximately 1.2 million synchronized 
sensor readings aligned with 3,452 maintenance 
events for analysis. To contextualize the dataset, this 
work acknowledges potential selection effects arising 
from the eligibility criteria and instrumentation fea-
sibility. Because assets required continuous observ-
ability and a full sensor suite, the enrolled cohort may 
under-represent intermittently used units, commis-
sioning/decommissioning assets, or equipment with 
restricted interfaces. Stratified sampling with propor-
tional allocation and random selection within strata 
was used to mitigate operator- or convenience-driven 
choices; nevertheless, residual spectrum bias toward 
well-instrumented, continuously operated assets may 
remain. The cross-facility evaluation is intended to 
partially offset site-specific effects, but external valid-
ity beyond similarly instrumented industrial contexts 
should be established in subsequent deployments.

This study selected tri-axial vibration, acoustic 
emission, infrared temperature, electrical current, 
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and pressure sensing to target complementary failure 
mechanisms and to improve early-warning reliability 
under heterogeneous operating regimes. Vibration 
features (e.g., RMS acceleration, peak-to-peak am-
plitude, spectral centroid) are most sensitive to bear-
ing wear, imbalance, and misalignment and provide 
fast-changing mechanical indicators. Acoustic emis-
sion extends sensitivity to high-frequency, impulsive 
phenomena associated with surface pitting, incipient 
cracking, and lubrication breakdown, which can pre-
cede broadband vibration growth. Thermal mea-
surements were included primarily as temperature 
gradients rather than absolute levels to capture fric-
tion-induced heating and thermal cycling effects that 
co-evolve with mechanical wear. Electrical current 
signatures (e.g., harmonic distortion and RMS cur-
rent) provide observability of motor and drive health, 
load anomalies, and power-quality-induced stress, 
thereby covering non-mechanical precursors that vi-
bration alone can miss. Pressure sensing captures hy-
draulic/pneumatic losses (leakage, valve sticking, flow 
restriction) that manifest weakly in motion signals but 
materially affect availability. Finally, cross-modal cor-
relation features help disambiguate true degradation 
from confounders such as product mix changes or 
transient operating modes, reducing false positives at 
fixed lead time. In preliminary model comparisons 
aligned with the training protocol, multi-modal inputs 
consistently preserved the 48-hour advance-warning 
objective with low false-positive rates across equip-
ment classes, whereas vibration-only baselines ex-
hibited degraded recall and shorter lead time on 
fluid-handling and thermally sensitive assets. For 
deployment-constrained settings, a minimal set of vi-
bration + temperature-gradient + current sensing re-
tained most predictive signal in this dataset; however, 
the full suite was used to ensure generalization across 
assets and facilities.

3.3 Industrial Equipment and Data Sources

The study encompassed 127 industrial ma-
chines, including rotary machinery (n=45), precision 
manufacturing equipment (n=38), material handling 
systems (n=28), and thermal processing equipment 
(n=16). This heterogeneous selection was chosen 
to ensure the robustness and generalizability of the 
framework. To support representativeness across 
equipment types and operating regimes, this study 
used stratified sampling with four predefined strata 
(rotary machinery, precision manufacturing equip-
ment, material handling systems, thermal processing 
equipment) at each facility. Target allocations within 

each facility were proportional to the installed base 
by stratum. When more eligible assets existed than 
could be instrumented concurrently, we random-
ly selected units within strata using a reproducible 
procedure to avoid operator- or convenience-driven 
selection. We also ensured coverage across duty-cy-
cle and age ranges present at each site to mitigate 
spectrum bias. Each facility contributed distinct 
operational characteristics. The Dammam facility 
(petrochemical processing) generated 380,000 sen-
sor readings. The Jubail facility (discrete manufac-
turing) contributed 450,000 sensor measurements. 
The Ras Al-Khair facility (metals processing) pro-
vided 370,000 sensor data points. This multi-facility 
approach enabled evaluation under diverse condi-
tions.

The system used a distributed IIoT architecture 
to capture multi-modal health indicators. Each ma-
chine was equipped with tri-axial accelerometers (10 
kHz sampling), non-contact infrared temperature 
sensors, current transformers, pressure transducers, 
and acoustic emission sensors (20 Hz to 100 kHz). 
A hierarchical sampling strategy was implemented. 
High-frequency vibration and acoustic data were cap-
tured at 10 kHz during 10-second windows every 15 
minutes. Temperature, pressure, and current were 
sampled at 1 Hz and aggregated to 1-minute averag-
es. This generated approximately 2,400 data points 
per machine per day, totaling 1.2 million sensor 
readings. Data transmission used MQTT over TLS 
for real-time streaming and OPC-UA for historical 
retrieval. Edge computing nodes performed initial 
data validation and feature extraction, minimizing 
bandwidth and latency.

3.4 Data Preprocessing and Feature 
Engineering

The raw sensor data underwent comprehensive 
preprocessing. The pipeline included data cleansing, 
normalization, feature extraction, temporal window-
ing, and dataset partitioning. Approximately 8.3% of 
raw measurements associated with maintenance or 
shutdowns were excluded. Missing data points (2.1% 
of the dataset) were handled with forward-fill interpo-
lation for short gaps (< 5 minutes) and cubic spline 
interpolation for longer periods (5-30 minutes). Out-
liers are excluded using a robust modified Z-score 
threshold of 3.5 based on median absolute deviation; 
high-frequency vibration/acoustic windows flagged as 
implausible are dropped rather than imputed. Min–
max scaling is computed per machine and sensor 
modality from training-split statistics and then ap-
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plied to validation/test splits to prevent leakage. Out-
lier detection used a modified Z-score approach [17]:

 

(1)

where MAD represents the median absolute devi-
ation and outliers were defined as observations with 

. 

Modality-specific data quality was handled con-
servatively. Imputation was restricted to low-rate 
channels (temperature, pressure, current) to bridge 
short operational gaps; high-frequency vibration and 
acoustic windows exhibiting gross artifacts or implau-
sible values were treated as outliers by the existing 
modified Z-score routine and excluded rather than 
interpolated. Feature extraction on high-frequency 
streams relied on time–frequency representations 
precisely to reduce sensitivity to transient spikes. 
These steps, together with edge-side signal validation, 
are designed to limit bias from channel-specific noise 
or dropouts while preserving informative temporal 
structure for learning.

Data normalization utilized min-max scaling to 
ensure consistent input ranges across sensor modal-
ities [23]:

 (2)

This normalization approach preserved the rel-
ative relationships between sensor measurements 
while ensuring numerical stability during neural net-
work training.

Feature engineering incorporated time-domain 
(mean, standard deviation, RMS) and frequency-do-
main (spectral centroid, harmonic ratios) character-
istics. Short-Time Fourier Transform (STFT) was 
used to capture transient phenomena.

3.5 Hybrid CNN-LSTM Architecture Design

The proposed architecture integrated CNNs for 
spatial feature extraction and LSTMs for temporal 
sequence modeling. The CNN component consisted 
of three sequential convolutional layers (64, 128, and 
256 filters of size 3×1) with ReLU activation, batch 
normalization, and dropout (rate: 0.2). The convolu-
tional operation is expressed as [34]:

(3)

where yi,j represents the output feature map, wm,n 

denotes the filter weights, xi+m, j+n is the input data, b is 
the bias term, and σ represents the ReLU activation 
function.

The LSTM component processed the extracted 
features through two LSTM layers (128 and 64 hid-
den units). LSTM cell operations are governed by 
the following equations [32]:

 

(4)

where ft, it, and ot represent the forget, input, and 
output gates respectively, Ct denotes the cell state, 
ht is the hidden state, W and b are weight matrices 
and bias vectors, σg is the sigmoid function, and 
represents element-wise multiplication.

The architecture integration employed a concat-
enation strategy where CNN-extracted features were 
reshaped and fed as sequential inputs to the LSTM 
layers. A dense output layer with sigmoid activation 
provided binary classification probabilities for equip-
ment failure prediction [44]:

 

(5)

Inputs use 90-min windows (1-min aggregates 
for temperature, pressure, current; derived features 
from 10-s/15-min vibration–acoustic windows), 50% 
overlap; windows with gaps > 30 min are discarded. 
Final architecture: Conv1D blocks ×3 with 64, 128, 
256 filters (kernel 3, stride 1, same padding), each 
with ReLU, BatchNorm, and dropout 0.20; no pool-
ing (temporal resolution preserved). Features are re-
shaped to sequences and fed to LSTM layers with 
128 and 64 units (dropout 0.20; recurrent dropout 
0.10), followed by Dense(32, ReLU) and Dense(1, 
sigmoid). Training uses Adam (initial learning rate 
1e-3) with exponential decay (0.96 every 5 epochs), 
binary cross-entropy with class weights (inverse class 
frequency on the training split), gradient-clipping 
(global-norm 1.0), L2 kernel regularization 1e-4, 
He-normal initialization, batch size 64, max 200 ep-
ochs, early stopping (patience 15 on validation loss). 
Temporal split is 60%/20%/20% by calendar order 
(train/validation/test). Random seed 42; TensorFlow 
2.8.0 / scikit-learn 1.0.2 / SciPy 1.8.0; A100 GPUs as 
noted.
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In this work, the convolutional stack learns local, 
cross-modal invariances and denoises short-range 
artifacts in multi-sensor windows (e.g., harmonics, 
aliasing, and transient spikes), producing a compact 
representation that is stable under small temporal 
misalignments. This reduces input dimensionality to 
the recurrent module (consistent with the layer-wise 
1,024 → 256 feature reduction reported in Table 5) 
and regularizes the temporal dynamics the LSTM 
must model. The LSTM then captures regime shifts 
and degradation trajectories that evolve over hours, 
aligning the decision boundary with advance-warn-
ing requirements. Empirically, this division of labor 
explains why CNN-only models underutilize tempo-
ral ordering, why LSTM-only models are sensitive 
to modality-specific noise and operating-mode drift 
when fed raw or shallow features, and why the hybrid 
retains low false positives at a fixed 48-hour horizon 
while preserving high recall across facilities.

3.6 Model Training and Optimization

The dataset was partitioned using a stratified tem-
poral split: 60% for training (first 11 months), 20% for 
validation (months 12-14), and 20% for testing (final 
4 months). Model training used the Adam optimizer 
with an initial learning rate of 0.001, an exponential 
decay schedule, and gradient clipping. The loss func-
tion was binary cross-entropy with class weight bal-
ancing [20]:

 
(6)

where N is the batch size, yi is the true label,  is 
the predicted probability, and wi represents class-spe-
cific weights calculated as:

 
(7)

Hyperparameter optimization employed Bayesian 
optimization using Gaussian processes to efficiently 
explore the parameter space. The optimization pro-
cess considered learning rate (  to  ), batch size (16 to 
128), dropout rates (0.1 to 0.5), and LSTM hidden 
units (32 to 256). Early stopping was implemented 
with a patience parameter of 15 epochs based on val-
idation loss to prevent overfitting.

To ensure a fair and unbiased comparison, both 
baselines were trained on the same feature windows, 
label definition (fixed 48 h horizon), and temporal 
splits as the hybrid model. Preprocessing used Stan-
dardScaler fit on training-split statistics only; class 

imbalance was handled with class_weight = "bal-
anced". Random Forest (scikit-learn 1.0.2) was tuned 
via Bayesian optimization (Gaussian-process surro-
gate; 100 trials) over: n_estimators ∈ [100, 2000], 
max_depth ∈ [3, None], max_features ∈ {sqrt, log2}, 
min_samples_split ∈ [2, 20], min_samples_leaf ∈ [1, 
10], bootstrap ∈ {True, False}. SVM used an RBF 
kernel with probability calibration (CalibratedClas-
sifierCV, 5-fold) and Bayesian optimization over: C 
∈ [1e−3, 1e3] (log scale), gamma ∈ [1e−4, 1] (log 
scale), class_weight ∈ {balanced}. Model selection 
employed nested, time-respecting cross-validation 
within the training+validation window using Group-
KFold by machine to prevent unit-level leakage; the 
objective was F1 on the validation folds, and the deci-
sion threshold was fixed by maximizing F1 on valida-
tion before final testing. After selection, models were 
retrained on train+validation with the chosen settings 
and then evaluated once on the held-out test period. 
The selected configurations were: RF—n_estimators 
= 1200, max_depth = 18, max_features = "sqrt", min_
samples_split = 4, min_samples_leaf = 1, bootstrap = 
True; SVM—RBF with C = 12.6 and gamma = 0.012. 
Random seed was 42 for all procedures.

This study operationalizes predictions as tiered 
alerts bound to existing plant systems. First, the de-
cision threshold—selected on the validation split 
to maximize F1 at a fixed 48-hour horizon—is held 
constant in deployment, producing (i) Advisory alerts 
(early signal, monitor) and (ii) Action-required alerts 
(schedule inspection/parts). Second, each alert car-
ries an explanation payload: top three contributing 
features with modality and time window, the most 
similar historical event ID, and a brief rationale tem-
plate (e.g., “rising RMS acceleration with concurrent 
temperature-gradient increase and current-harmon-
ic distortion”). Third, alerts are delivered through 
OPC-UA/MQTT to SCADA and automatically 
open CMMS work orders using pre-filled templates 
(asset, likely subsystem, recommended checks, parts 
list, hazard tags), enabling planners to slot tasks into 
maintenance calendars. Fourth, operators acknowl-
edge alerts in CMMS; outcomes (confirmed fault, 
no fault, corrective action) are logged for continuous 
learning. This design links model outputs to concrete 
tasks while preserving the 48-hour lead-time objec-
tive and the observed 2.1% false-positive rate.

3.7 Performance Evaluation Metrics

Model performance was assessed using accuracy, 
precision, recall, and F1-score, with emphasis on min-
imizing false negatives. Accuracy was defined as [16]:
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(8)

Precision measured the proportion of correctly 
identified failures among all predicted failures:

 

(9)

Recall evaluated the model's ability to identify ac-
tual failures:

 

(10)

F1-score provided a balanced assessment com-
bining precision and recall:

 

(11)

where TP, TN, FP, and FN represent true pos-
itives, true negatives, false positives, and false nega-
tives respectively.

Additional performance metrics included the 
Area Under the Receiver Operating Characteristic 
curve (AUC-ROC) to assess classification perfor-
mance across various threshold settings, and the 
Matthews Correlation Coefficient (MCC) for robust 
evaluation in the presence of class imbalance [39]:

 

(12)

Temporal evaluation considered prediction lead 
time accuracy, measuring the model's ability to pro-
vide reliable 48-hour advance warning before equip-
ment failures. This assessment involved calculating 
the temporal distribution of true positive predictions 
relative to actual failure occurrences.

3.8 Economic Impact Assessment 
Methodology

The economic evaluation quantified operational 
impacts of the CNN–LSTM framework from the fa-
cility operator’s perspective. Outcomes included (i) 
maintenance costs (planned and unplanned), (ii) un-
planned downtime hours and their monetization, and 
(iii) Overall Equipment Effectiveness (OEE). The 
18-month observation period (January 2023–June 
2024) was partitioned into: a 6-month pre-imple-
mentation baseline (January–June 2023), a 3-month 
transition period used for deployment and operator 

onboarding (July–September 2023; excluded from 
economic contrasts), and a 9-month post-implemen-
tation period (October 2023–June 2024). Monthly 
aggregates were extracted from each facility’s CMMS 
(work orders, parts and labor costs), ERP cost centers 
(repair materials, contractor spend), production logs 
(scheduled operating hours, realized throughput), 
and OEE records (Availability, Performance, Quali-
ty). To control for production mix and schedule vari-
ation, all cost and downtime metrics were normalized 
by scheduled operating hours; facility-level summa-
ries were combined using scheduled-hour weights.

Planned maintenance cost Cplan and unplanned 
maintenance cost Cunplan were taken directly from 
CMMS/ERP allocations (labor, parts, contracted ser-
vices). Unplanned downtime was quantified as hours   
Hdt from production logs. The monetary value of 
downtime was computed as:

(13)

where V denotes the facility-specific contribution 
margin per scheduled operating hour (currency/
hour) derived from historical financial reports. Here,   
Cdt is the downtime cost, Hdt the unplanned down-
time hours, and V the contribution-margin rate used 
to monetize lost production.

Total maintenance-related cost per month was:
 

(14)

In this expression, Ctot is the combined monthly 
economic burden; Cplan, Cunplan, and Cdt  are as defined 
above.

Percent reduction calculations used pre- vs. 
post-period monthly means:

 
(15)

where  and  are baseline and post-im-
plementation monthly means of the metric X (e.g., 
Ctot, Hdt) after normalization.

OEE was computed per standard practice as:

(16)

where A is Availability (operating time / planned 
production time), P is Performance (actual output 
/ ideal output at nameplate rate), and Q is Quality 
(good units / total units).

Implementation cost Cimpl comprised sensors and 
hardware, edge and central compute, software inte-
gration, and staff training incurred during the tran-
sition period. Monetary benefits B were defined as 
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the difference between pre- and post-period totals:            
B = (Ctot,pre ₋ Ctot,post). For ROI, benefits were annual-
ized from the 9-month post period using a factor of 
12/9:

 
(17)

Here, Bannual = Bpost ×(12/9) is the annualized ben-
efit, Bmonthly = Bpost /9 is the average monthly benefit, 
and Cimpl  is the one-time implementation cost. Pay-
back is expressed in months.

The one-time implementation cost I used in 
equation (17) comprised four components: (i) sen-
sors and installation ($0.82 million; 44%), (ii) edge 
and central compute including networking hardware 
($0.29 million; 16%), (iii) software integration (SCA-
DA/CMMS/ERP connectors, data pipelines, dash-
boards) ($0.54 million; 29%), and (iv) training and 
change management ($0.22 million; 12%); totals sum 
to I = $1.87 million. Downtime monetization used 
facility-specific contribution margins V (currency per 
scheduled operating hour) obtained from historical 
financial reports and applied in equation (13); all cost 
and downtime metrics were normalized by sched-
uled operating hours, and facility-level summaries 
were weighted by scheduled hours as stated above. 
Recurring support costs were booked within opera-
tional expenses during the post-implementation win-
dow and are therefore reflected in equation (14).

Uncertainty for percentage changes and OEE dif-
ferences used bootstrap resampling of facility-months 
(1,000 iterations) to generate 95% confidence inter-
vals. Hypothesis tests followed the procedures de-
scribed in “Statistical Analysis.” Sensitivity analyses 
varied V by ±20% to assess robustness of Cdt, ROI, 
and payback. All monetary results were expressed in 
USD; facility-reported costs in local currency were 
converted using corresponding monthly average ex-
change rates over the observation period; no inflation 
adjustment was applied given the ≤18-month horizon.

3.9 Statistical Analysis

Statistical analysis used parametric and non-para-
metric approaches. All hypothesis tests were two-sid-
ed with alpha = 0.05. Pairwise model comparisons 
used McNemar’s test on paired predictions from the 
same temporal test set with Bonferroni adjustment 
across model contrasts. Metric confidence intervals 
are 95% bootstrap percentile intervals (1,000 resam-
ples) stratified by machine; effect sizes (Cohen’s d, 
Cramér’s V) are reported alongside p-values. Paired 

t-tests compared the proposed CNN-LSTM ap-
proach against baselines. Model comparison used 
McNemar's test for classification performance differ-
ences [45]:

 
(18)

where n01 and n10 represent the number of instanc-
es where the two models disagree in their predictions. 
Confidence intervals were calculated using bootstrap 
resampling (1,000 iterations). Economic impact anal-
ysis used Wilcoxon signed-rank tests for cost reduc-
tions. All analyses were performed using Python 3.9 
with scikit-learn 1.0.2, TensorFlow 2.8.0, and SciPy 
1.8.0. Effect sizes were calculated using Cohen's d 
and Cramer's V. Computational experiments were 
conducted on a high-performance computing cluster 
(NVIDIA A100 GPUs, Intel Xeon processors). Mod-
el training time averaged 4.2 hours, with inference 
times of approximately 15 milliseconds per batch.

4. Results and Discussions

4.1 Overall Model Performance Evaluation

To evaluate the framework, extensive testing was 
conducted on a temporal test set of 240,000 sensor 
measurements from the final four months of data. 
Table 2 presents the detailed performance metrics.

The hybrid CNN-LSTM framework demonstrat-
ed exceptional predictive performance with 94.3% 
accuracy. A precision of 92.7% indicates that most 
predicted failures were actual, minimizing unneces-
sary maintenance. The 96.1% recall demonstrates a 
superior capability to detect actual failures, with only 
3.9% of genuine failures missed. The F1-score of 
94.4% reflects a balanced performance. The AUC-
ROC of 0.987 indicates excellent discrimination 
capability, and the MCC of 0.891 confirms robust 
performance despite class imbalance. The 2.1% false 
positive rate and 3.9% false negative rate meet strin-
gent industrial requirements [27].

4.2 Comparative Analysis with Baseline 
Methods

To establish superiority, benchmarking was con-
ducted against traditional threshold-based monitor-
ing, conventional machine learning, and individual 
deep learning architectures. Figure 1 presents the 
comparative performance analysis.
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The analysis revealed substantial advantages for 
the hybrid CNN-LSTM framework. Traditional 
threshold-based monitoring achieved only 68.4% 
accuracy with poor recall (54.2%). Random Forest 
achieved 78.9% accuracy, and Support Vector Ma-
chines achieved 79.2% accuracy. Individual deep 
learning architectures improved upon traditional 

methods but were inferior to the hybrid approach. 
The standalone CNN architecture achieved 85.7% 
accuracy, showing effective spatial feature extraction 
but limited temporal modeling. The standalone 
LSTM implementation reached 87.3% accuracy, in-
dicating strong sequential pattern recognition but sub-
optimal spatial feature use. The hybrid CNN-LSTM 

Figure 1. Comparative performance analysis of the hybrid CNN-LSTM framework against baseline predictive maintenance methods. 
(a) Primary classification metrics comparison across six different approaches. (b) ROC curves with AUC values demonstrating 
discrimination capability. (c) Error rate analysis showing false positive and false negative rates. (d) Computational efficiency 

assessment including training time and inference latency metrics.

Metric Value 95% Confidence Interval Standard Error
Accuracy 94.3% [93.8%, 94.8%] 0.24%

Precision 92.7% [91.9%, 93.5%] 0.41%

Recall 96.1% [95.4%, 96.8%] 0.36%

F1-Score 94.4% [93.7%, 95.1%] 0.35%

AUC-ROC 0.987 [0.984, 0.990] 0.0015

Matthews Correlation Coefficient 0.891 [0.885, 0.897] 0.003

False Positive Rate 2.1% [1.7%, 2.5%] 0.21%

False Negative Rate 3.9% [3.2%, 4.6%] 0.36%

Positive Predictive Value 92.7% [91.9%, 93.5%] 0.41%

Negative Predictive Value 97.8% [97.4%, 98.2%] 0.20%

Table 2. Comprehensive performance metrics for the hybrid CNN-LSTM predictive maintenance framework evaluated on the 
temporal test set containing 240,000 sensor measurements across 127 industrial machines
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framework outperformed all baselines with statistical-
ly significant improvements (p < 0.001, McNemar's 
test). These between-model differences were evaluat-
ed on paired predictions (McNemar’s test, two-sided, 
Bonferroni-adjusted); 95% confidence intervals were 
obtained by bootstrap (1,000 resamples). Summary 
statistics, test statistics, and effect sizes are consol-
idated in Table 6. The gains over the standalone 
LSTM included 7.0 percentage points in accuracy, 
5.8 in precision, and 8.4 in recall. The AUC-ROC 
improvement of 0.094 over the standalone LSTM 
demonstrated enhanced discrimination [28]. While 
the hybrid architecture required longer training (4.2 
hours vs. 2.8 hours for LSTM), its inference latency 
of 15 milliseconds meets real-time deployment re-
quirements, and the computational overhead is jus-
tified by the performance gains [27].

Computational complexity and deployment 
trade-offs. To make the efficiency–performance bal-
ance explicit, we summarize the dominant operation 
counts of the hybrid stack and relate them to the 
measured timings reported above. For a 1D convolu-
tional stack with kernel size 3 and three layers of 64, 
128, and 256 filters applied to C input channels over 
T time samples, the per-window multiply–accumu-
late (MAC) operations are approximated by:

(19)

Here, MACconv denotes the convolutional op-
erations per inference window; T is the number of 
time samples per window; C is the number of sensor 
channels; the filter counts (64, 128, 256) follow the 
architecture description; and the factor 3 is the ker-
nel length. This expression shows linear scaling in T 
and approximately linear scaling in C, with a constant 
defined by layer widths. For the LSTM with hidden 
size h and input feature dimension d, the per-time-
step operations are well captured by:

 
(20)

so that over L timesteps the recurrent cost is:
 

(21)

In these expressions, MAClstm and MAClstm,total 
denote the LSTM operations per step and per se-
quence, respectively; h is the number of LSTM units;   
d is the dimensionality of the CNN features entering 
the LSTM; and L is the number of temporal steps 
processed. Taken together, the overall per-window 
complexity satisfies:

(22)

Here, MACtotal denotes the approximate total op-
erations per inference window, aggregating convolu-
tional and recurrent components.

Practically, these counts contextualize the ob-
served timings: the hybrid model’s training time (4.2 
hours versus 2.8 hours for the LSTM-only baseline) 
reflects the added convolutional stack, while infer-
ence remains fast (≈ 15 ms per batch) because the 
recurrent portion dominates only when L or h are 
substantially increased. Under the deployed cadence 
(10-s windows every 15 min with multi-modal inputs), 
the compute duty cycle per machine is well below 
real-time budgets, and the empirical gains—+7.0 per-
centage points accuracy over LSTM-only, higher 
recall (96.1%), and lower false positives (2.1%) at a 
fixed 48-hour lead time—offset the incremental train-
ing cost. When stricter edge constraints apply, reduc-
ing filter widths or h linearly decreases MACconv or 
MAClstm,total with proportionate effects on compute; 
this study retains the reported configuration because 
it consistently achieved the stated accuracy/lead-time 
targets across facilities.

This work demonstrated technical and econom-
ic viability; however, industrial rollout must contend 
with heterogeneous assets, variable operating regimes, 
and legacy systems. We summarize key challenges 
and concrete mitigations observed or required for 
scale: (1) Data readiness and labeling. Event logs and 
CMMS codes may incompletely map to physical fail-
ure modes, complicating supervision. Mitigation: in-
stitute a data readiness checklist (sensor health audits, 
time-synchronization verification, consistent failure 
taxonomies) and use weak labels from CMMS/work 
orders for model warm starts, followed by rolling hu-
man-in-the-loop adjudication on uncertain cases. (2) 
Sensorization and retrofits. Not all assets can sustain 
full multi-modal instrumentation due to access, haz-
ards, or cost. Mitigation: adopt a risk-based sensor 
strategy that prioritizes the minimal set validated in 
this work (vibration + temperature gradient + current) 
for constrained assets while retaining the full suite 
where generalization across equipment is critical. (3) 
Integration with SCADA/CMMS/ERP. Interface het-
erogeneity and data latency can hinder closed-loop 
maintenance. Mitigation: standardize ingestion via 
OPC-UA for historical access and MQTT (TLS) for 
streaming and bind predictions to work-order tem-
plates and parts kitting to ensure actionable work-
flows. (4) Concept drift and lifecycle management. 
Shifts in product mix, duty cycles, or maintenance 
practices degrade fixed models. Mitigation: monitor 
drift on input statistics and outcome metrics, schedule 
periodic fine-tuning with expanding-window evalua-
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tion, and maintain shadow deployments before pro-
moting updated models. (5) Alarm management and 
human factors. Even low false-positive rates can cause 
alarm fatigue at scale, eroding operator trust. Mitiga-
tion: tier alerts (early advisory vs. action-required), 
expose feature-attribution summaries for interpret-
ability, and align thresholds with maintenance calen-
dars to minimize disruption. (6) Network and edge 
reliability. Packet loss, clock skew, and edge overload 
can impair real-time inference. Mitigation: enforce 
authenticated transport with time-alignment checks, 
perform edge-side validation/feature extraction to 
reduce bandwidth, and buffer to tolerate intermit-
tent connectivity. (7) Cybersecurity and governance. 
Expanded connectivity increases attack surface and 
data-governance obligations. Mitigation: segment op-
erational networks, apply least-privilege credentials, 
and log model decisions for auditability and safety 
reviews. (8) ROI sensitivity and change management. 
Benefits vary with downtime valuation and spare-part 
logistics. Mitigation: accompany pilots with site-specif-
ic sensitivity analyses, update spare strategies based on 
predicted failure distributions, and provide structured 
training for planners and technicians. (9) Regulatory 

and environmental constraints. Hazardous areas and 
extreme environments limit sensor options. Mitiga-
tion: use certified enclosures and intrinsically safe sen-
sors and prefer non-contact modalities where needed.

These mitigations contextualize the cross-facility 
generalization and low data-loss/latency characteris-
tics reported here and provide a practical path to sus-
taining the 48-hour advance-warning objective under 
diverse operating conditions [29].

4.3 Temporal Prediction Performance 
Analysis

A critical requirement is the ability to provide reli-
able advance warning. Figure 2 presents the temporal 
prediction analysis.

The analysis demonstrated exceptional advance 
warning, with 89.3% of failures predicted 36-60 hours 
in advance. The target 48-hour warning was achieved 
for 78.6% of failure events. The mean prediction 
lead time was 47.2 hours (95% CI: [45.8, 48.6]), 
with a standard deviation of 12.4 hours. Prediction 
accuracy remained robust, staying above 90% for pre-
dictions up to 54 hours in advance. At the 48-hour 

Figure 2. Temporal prediction performance analysis of the hybrid CNN-LSTM framework. (a) Distribution of prediction lead times for 
3,452 correctly identified failures showing advance warning periods. (b) Accuracy variation as a function of prediction lead time from 
6 to 72 hours before failure. (c) Prediction confidence evolution for a representative equipment failure case demonstrating temporal 

prediction behavior.
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horizon, the framework maintained 94.1% accuracy. 
The case study of prediction confidence showed that 
initial anomaly detection occurred 65-72 hours be-
fore failure, with confidence levels progressively in-
creasing and crossing the decision threshold of 0.5 at 
an average of 48.3 hours before failure.

4.4 Cross-Facility Generalization 
Performance

To evaluate generalizability, cross-facility valida-
tion was conducted across the three industrial facil-
ities. Table 3 presents the performance metrics for 
each facility and cross-facility validation.

Within-facility performance was consistently ef-
fective. The Dammam facility achieved the highest 
metrics (95.1% accuracy), reflecting its stable contin-
uous operations. Cross-facility validation revealed ro-
bust generalization with a performance degradation 
of only 2-3 percentage points. Accuracy ranged from 
91.5% to 92.5%, indicating strong transferability of 
learned patterns. The minimal performance variation 
(SD of 0.39 percentage points) demonstrated that the 
framework captured fundamental degradation pat-
terns, not facility-specific artifacts. All cross-facility 
scenarios exceeded the 90% accuracy threshold, con-
firming practical deployment viability [30].

4.5 Ablation Study Results

To identify the contributions of architectural 
components, comprehensive ablation studies were 
conducted. Figure 3 presents the results.

The analysis confirmed the synergistic benefits of 
the hybrid approach [41]. The hybrid’s gains arise 
because learned convolutional features supply tem-

porally consistent, cross-modal cues (e.g., vibration–
temperature–current co-patterns) that disambiguate 
transient disturbances from progressive degradation 
[43]. With these cues, the recurrent gates prefer-
entially update on sustained trends rather than on 
isolated bursts, which reduces false positives with-
out shortening lead time. Conversely, removing the 
CNN forces the LSTM to learn both denoising and 
long-horizon dependencies from raw streams, in-
creasing sensitivity to operating-mode changes; re-
moving the LSTM preserves strong local patterning 
but weakens sequence-level trend capture, degrading 
early warnings [11]. Removing the CNN layers result-
ed in a 6.8 percentage point accuracy decrease (to 
87.5%), demonstrating the importance of spatial fea-
ture extraction. Eliminating the LSTM components 
caused a 7.2 percentage point decrease (to 87.1%), 
highlighting the necessity of temporal modeling. The 
hybrid architecture outperformed simple concatena-
tion by 3.4 percentage points. Individual CNN lay-
er analysis revealed that removing the third convo-
lutional layer (256 filters) caused the largest impact 
(4.9 percentage point decrease), indicating deeper 
features were crucial for complex pattern recogni-
tion. Feature engineering ablation showed the impor-
tance of multi-modal feature extraction. Using only 
time-domain features achieved 89.7% accuracy, while 
frequency-domain features alone reached 86.3%. 
The combined approach was superior [15]. Tempo-
ral windowing analysis revealed optimal performance 
with window sizes of 60-90 minutes and a 50% over-
lap ratio. Hyperparameter sensitivity analysis con-
firmed the robustness of the optimized configuration, 
with performance maintained within 1.5 percentage 
points of optimal values for learning rates between 
0.0005-0.002 and batch sizes between 32-128.

Facility/Scenario Accuracy Precision Recall F1-Score Equipment Count Failure Events

Dammam Facility 95.1% 93.4% 96.8% 95.1% 45 1,287

Jubail Facility 93.8% 92.1% 95.6% 93.8% 38 1,156

Ras Al-Khair Facility 94.0% 92.5% 95.9% 94.2% 44 1,009

Cross-Facility (Dammam→Jubail) 91.7% 89.8% 93.4% 91.6% 38 1,156

Cross-Facility (Dammam→Ras Al-Khair) 92.3% 90.5% 94.1% 92.3% 44 1,009

Cross-Facility (Jubail→Dammam) 92.1% 90.2% 94.0% 92.1% 45 1,287

Cross-Facility (Jubail→Ras Al-Khair) 91.5% 89.4% 93.7% 91.5% 44 1,009

Cross-Facility (Ras Al-Khair→Dammam) 92.5% 90.7% 94.3% 92.5% 45 1,287

Cross-Facility (Ras Al-Khair→Jubail) 91.9% 90.0% 93.8% 91.9% 38 1,156

Multi-Facility Combined 94.3% 92.7% 96.1% 94.4% 127 3,452

Table 3. Cross-facility generalization performance of the hybrid CNN-LSTM framework evaluated across three industrial facilities 
with distinct operational characteristics and equipment portfolios
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4.6 Data Integration Framework Performance 
and Real-Time Processing Capabilities

To validate the data integration framework, per-
formance was tested under various operational loads. 
Figure 4 presents the analysis.

The framework demonstrated exceptional re-
al-time capabilities, with a sustained throughput of 
2.4 million data points per hour and a peak of 3.8 
million. The distributed edge computing architecture 
processed 89.3% of the computational load locally. 
End-to-end processing latency averaged 12.7 mil-
liseconds, well within the 50-millisecond industrial 
requirement. System reliability was robust, with data 
loss rates below 0.03% and network communication 
failures below 0.1%. Scalability testing showed linear 
performance up to 200 monitored units per facility, 
with substantial capacity for future expansion. Data 
integration efficiency analysis revealed optimal re-
source utilization, with edge nodes averaging 72% 
CPU utilization and central servers at 58%. The 
framework successfully integrated heterogeneous 

sensor protocols with 99.7% translation rates and 
maintained sub-millisecond temporal synchroniza-
tion [20].

4.7 Multi-Layer Architecture Optimization 
and Temporal Pattern Recognition

To demonstrate the effectiveness of the multi-lay-
er architecture, a comprehensive analysis of its hier-
archical feature extraction and temporal modeling 
was conducted. Table 4 presents the analysis of the 
architecture's components.

The multi-layer CNN architecture demonstrated 
progressive feature abstraction, with each layer in-
crementally contributing to accuracy [21], [23]. The 
third layer reached 87.4% accuracy by identifying 
complex spatial patterns. Temporal pattern analysis 
revealed the critical importance of the dual LSTM 
architecture. The first LSTM layer modeled short-
term events with a 75-minute receptive field, while the 
second extended this to 150 minutes for long-term 
trends, achieving 92.3% accuracy. Architecture opti-

Figure 3. Comprehensive ablation study results for the hybrid CNN-LSTM framework. (a) Component contribution analysis showing 
performance impact of removing individual architectural elements. (b) Feature engineering approach comparison including time-

domain, frequency-domain, and combined feature sets. (c) Temporal windowing strategy evaluation with different window sizes and 
overlap configurations. (d) Hyperparameter sensitivity analysis for learning rate, batch size, and network architecture parameters.
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mization showed the multi-layer design significantly 
outperformed shallow (79.8% accuracy) and exces-
sively deep (88.9% accuracy) alternatives. The hier-
archical feature extraction was validated through visu-
alization, showing that early layers learned low-level 

features while deep layers captured high-level degra-
dation signatures. The framework's automated fea-
ture extraction (87.4% accuracy) outperformed tra-
ditional manual feature extraction (84.7% accuracy).

Figure 4. Data integration framework performance evaluation for real-time sensor stream processing. (a) Data throughput analysis 
across varying sensor configurations and sampling rates. (b) End-to-end processing latency measurements from acquisition to 

prediction under different system loads. (c) System reliability assessment including data loss rates and communication stability. (d) 
Scalability analysis demonstrating framework performance with increasing equipment monitoring loads.

Architecture Component Layer Configuration Feature 
Dimensionality

Temporal 
Receptive Field

Pattern 
Recognition 

Accuracy

Training 
Convergence 

(Epochs)

CNN Layer 1 64 filters, 3×1 kernel 1,024 → 768 N/A 73.2% 45

CNN Layer 2 128 filters, 3×1 kernel 768 → 512 N/A 81.7% 38

CNN Layer 3 256 filters, 3×1 kernel 512 → 256 N/A 87.4% 32

LSTM Layer 1 128 hidden units 256 → 128 75 minutes 89.1% 28

LSTM Layer 2 64 hidden units 128 → 64 150 minutes 92.3% 24

Integration Layer Dense 32 units 64 → 32 150 minutes 94.3% 22

Comparison: Shallow CNN 2 layers, 64 filters 1,024 → 256 N/A 79.8% 52

Comparison: Single LSTM 256 hidden units 256 → 256 100 minutes 85.6% 41

Comparison: Deep CNN 5 layers, 512 filters 1,024 → 128 N/A 88.9% 67

Table 4. Multi-layer CNN-LSTM architecture optimization results showing layer-wise feature extraction performance, temporal 
pattern recognition capabilities, and convergence characteristics across different network depths and configurations
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4.8 Feature Importance and Model 
Interpretability

Understanding the relative importance of differ-
ent sensor modalities and temporal patterns is crucial 
for practical deployment and maintenance strategy 
optimization. Feature importance analysis was con-
ducted using integrated gradients and attention weight 
visualization to identify the most discriminative indi-
cators of equipment degradation. These rankings 
substantiate the sensor-suite design: vibration-derived 
indicators dominate short-horizon sensitivity, tem-
perature gradients and current harmonics contribute 
complementary long-horizon and non-mechanical 
observability, and cross-modal correlations reduce 
confounding—together enabling the reported 48-
hour lead time at low false-positive rates [33]. Table 
5 presents the quantitative feature importance rank-
ings across sensor modalities and temporal charac-
teristics. To make explanations actionable, this study 
renders per-event “explanation cards” in the CMMS: 
the card lists the top-ranked features with their re-
cent trend, the implicated subsystem (e.g., bearings, 
lubrication, electrical supply), and a short checklist 
(inspect coupling alignment; verify lubrication; check 
phase imbalance). Cross-modal attributions (e.g., 
vibration + temperature-gradient) are highlighted to 
distinguish progressive degradation from transient 
disturbances. In practice, these cards accompany Ac-
tion-required alerts and guide triage, while Advisory 
alerts expose the same fields for monitoring without 
immediate work-order execution [35].

Vibration-based features demonstrated the high-
est predictive importance, with RMS acceleration 
achieving the maximum importance score of 0.342. 
This finding aligned with established mechanical 
engineering principles, as vibration patterns pro-
vide early indication of bearing wear, misalignment, 
and structural degradation. Peak-to-peak amplitude 
(importance score 0.287) captured transient events 
and impact-related failures, while spectral centroid 
(0.198) identified frequency distribution shifts asso-
ciated with developing mechanical faults. Thermal 
features ranked prominently in the importance hi-
erarchy, with temperature gradient (0.251) provid-
ing more discriminative information than absolute 
temperature values (0.152). The gradient-based ap-
proach captured dynamic thermal changes associated 
with friction increases, lubrication degradation, and 
thermal cycling effects. This finding validated the so-
phisticated feature engineering approach employed 
in the framework. Electrical signature analysis con-
tributed substantial predictive value through current 
harmonic distortion (0.234) and RMS current mea-
surements (0.143). Harmonic distortion patterns in-
dicated motor winding degradation, bearing electrical 
faults, and power quality issues affecting equipment 
operation. The temporal sensitivity analysis revealed 
that electrical features provided consistent long-term 
trend information complementing the high-frequen-
cy mechanical indicators. Multi-sensor correlation 
features (importance score 0.089) demonstrated the 
value of cross-modal analysis in capturing complex 
failure modes involving multiple equipment sub-

Feature Category Feature Type Importance Score Rank Temporal Sensitivity

Vibration Features RMS Acceleration 0.342 1 High

Vibration Features Peak-to-Peak Amplitude 0.287 2 High

Thermal Features Temperature Gradient 0.251 3 Medium

Electrical Features Current Harmonic Distortion 0.234 4 Medium

Vibration Features Spectral Centroid 0.198 5 High

Acoustic Features High-Frequency Energy 0.176 6 Low

Pressure Features Pressure Variance 0.165 7 Medium

Thermal Features Absolute Temperature 0.152 8 Low

Electrical Features Current RMS 0.143 9 Medium

Vibration Features Frequency Domain Peak 0.139 10 High

Acoustic Features Acoustic Emission Rate 0.127 11 Low

Pressure Features Absolute Pressure 0.118 12 Low

Electrical Features Voltage Fluctuation 0.095 13 Low

Derived Features Multi-sensor Correlation 0.089 14 Medium

Temporal Features Trend Coefficient 0.076 15 High

Table 5. Feature importance analysis showing the relative contribution of different sensor modalities, temporal patterns, and derived 
features to failure prediction accuracy in the hybrid CNN-LSTM framework
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systems. The relatively lower individual importance 
reflected the distributed nature of correlation infor-
mation across multiple sensor combinations rather 
than reduced relevance. Temporal pattern analysis 
revealed distinct sensitivity characteristics across fea-
ture categories [41]. Vibration features showed high 
temporal sensitivity with rapid changes preceding 
failures, acoustic features demonstrated low temporal 
sensitivity providing baseline condition assessment, 
and electrical features exhibited medium temporal 
sensitivity with gradual degradation patterns [35].

4.9 Economic Impact Assessment

The practical value of predictive maintenance sys-
tems is ultimately measured by their economic im-
pact on manufacturing operations. Consistent with 
the methodology described in Methodology, the 
economic evaluation contrasted a 6-month pre-im-
plementation baseline (January–June 2023) with 
a 9-month post-implementation period (October 
2023–June 2024), excluding the 3-month transition 

(July–September 2023). Monetary benefits were 
annualized by a factor of 12/9 for return-on-invest-
ment and payback computations. Comprehensive 
cost-benefit analysis then compared maintenance 
costs, downtime expenses, and OEE across these 
windows. Figure 5 presents the economic impact as-
sessment across three panels quantifying the financial 
benefits of the hybrid CNN-LSTM predictive main-
tenance framework. Figure 5a displays the compari-
son of maintenance costs before and after implemen-
tation across the three participating facilities. Figure 
5b shows the reduction in unplanned downtime and 
associated production losses. Figure 5c illustrates the 
overall equipment effectiveness improvement and re-
turn on investment calculations.

Maintenance cost analysis revealed substantial 
economic benefits across all participating facilities 
[12]. Total maintenance costs decreased by an av-
erage of 28% following framework implementation, 
with the largest reductions observed in unplanned 
maintenance activities (47% decrease). The Dam-
mam facility achieved the greatest cost savings (32% 

Figure 5. Economic impact assessment of the hybrid CNN-LSTM predictive maintenance framework. (a) Maintenance cost 
comparison showing planned versus unplanned maintenance expenses before and after implementation. (b) Downtime reduction 

analysis quantifying production loss prevention across different equipment categories. (c) Overall equipment effectiveness 
improvement and return on investment metrics demonstrating financial benefits.
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reduction) due to the high cost of emergency repairs 
in continuous process operations. Planned mainte-
nance costs increased by 12% as preventive interven-
tions replaced reactive repairs, but this increase was 
more than offset by the dramatic reduction in emer-
gency maintenance expenses. Unplanned downtime 
reduction represented the most significant economic 
benefit, with average downtime decreasing by 37% 
across all monitored equipment. Production loss 
prevention varied by equipment category, with ro-
tating machinery showing the greatest improvement 
(42% downtime reduction) followed by precision 
manufacturing equipment (35% reduction) and ma-
terial handling systems (31% reduction). The mon-
etary value of downtime reduction was calculated 
based on facility-specific production rates and prof-
it margins, yielding average savings of $2.3 million 
annually across the three facilities. OEE improve-
ments demonstrated the comprehensive operational 
benefits of predictive maintenance implementation. 
Average OEE increased from 73.2% to 84.1% (15% 
improvement), with availability improvements con-
tributing 8.7 percentage points, performance rate im-
provements adding 1.8 percentage points, and quality 
rate enhancements providing 0.6 percentage points. 
The availability improvements directly reflected re-
duced unplanned downtime, while performance rate 
gains resulted from optimized maintenance sched-
uling and reduced degraded operation periods. Re-
turn on investment analysis calculated the framework 
implementation costs including sensor installation, 
software development, training, and operational ex-
penses against the quantified benefits. The total im-
plementation cost across all three facilities was $1.87 
million, while annual benefits totaled $3.42 million, 
yielding a return on investment of 183% in the first 
year. The payback period was calculated at 6.5 
months, demonstrating rapid cost recovery typical of 
successful predictive maintenance implementations.

Consistent with the methodology [12], the imple-
mentation cost I = $1.87 million consisted of sensors/
installation ($0.82M), compute/networking ($0.29M), 
software integration ($0.54M), and training/change 
management ($0.22M). Sensitivity analyses tied to 
equations (13)–(17) showed that varying V by ±25% 
changed annualized benefits from $3.42M to a range 
of $3.00M–$3.85M, yielding ROI = 161%–206% and 
payback = 5.8–7.4 months. Varying model operating 
points by ±2 percentage points recall around 96.1% 
and ±1 percentage point false-positive rate around 
2.1% produced benefits of $3.02M–$3.88M (ROI 
= 162%–208%; payback = 5.8–7.3 months). Includ-
ing a recurring support cost of $0.20M/year (booked 

as OpEx) implies ROI ≈ 172% and payback ≈ 7.0 
months. These ranges indicate that the reported 
183% ROI and 6.5-month payback are stable un-
der reasonable economic and operational variation. 
Secondary economic benefits included improved 
maintenance planning efficiency (23% reduction in 
maintenance labor hours), extended equipment lifes-
pan (estimated 18% increase based on reduced fail-
ure severity), and enhanced safety performance (31% 
reduction in maintenance-related safety incidents). 
These additional benefits, while more difficult to 
quantify precisely, contributed substantially to the 
overall economic value proposition.

4.10 Statistical Validation and Significance 
Testing

Rigorous statistical validation was conducted to 
establish the significance and reliability of the report-
ed performance improvements. The validation em-
ployed both parametric and non-parametric statisti-
cal tests appropriate for the data characteristics and 
comparison scenarios. Table 6 presents the compre-
hensive statistical validation results including signifi-
cance tests, effect sizes, and confidence intervals for 
all major findings.

All primary performance comparisons demon-
strated statistical significance with p-values < 0.001, 
providing strong evidence for the superiority of the 
hybrid CNN-LSTM approach [12]. McNemar's test 
results confirmed significant improvements over all 
baseline methods, with the largest effect sizes observed 
for comparisons against traditional threshold-based 
monitoring (Cohen's d = 2.31) and conventional 
machine learning approaches (Cohen's d = 1.86-
1.92). The effect sizes for deep learning comparisons 
(CNN only: d = 1.24, LSTM only: d = 1.08) indicated 
substantial practical significance beyond statistical sig-
nificance. Cross-facility validation revealed statistical-
ly significant but practically acceptable performance 
degradation when applying models across different 
manufacturing environments (p = 0.003, Cohen's d = 
0.34). The small to medium effect size indicated that 
while cross-facility performance differences were de-
tectable, they remained within acceptable bounds for 
practical deployment. ANOVA results showed no 
significant variation in baseline performance across 
facilities (p = 0.118), confirming that performance dif-
ferences reflected transfer learning challenges rather 
than fundamental facility-specific factors. Economic 
impact validation employed non-parametric tests due 
to non-normal cost distributions typical in industrial 
settings. Wilcoxon signed-rank tests confirmed signif-
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icant improvements in both maintenance cost reduc-
tion (p < 0.001, d = 1.54) and downtime reduction 
(p < 0.001, d = 1.43). The large effect sizes indicated 
that economic benefits were not only statistically sig-
nificant but also practically meaningful for industrial 
operations. Bootstrap confidence intervals were cal-
culated using 1,000 resampling iterations to provide 
robust uncertainty estimates for all performance met-
rics. The narrow confidence intervals (typically ± 0.3-
0.7 percentage points for accuracy metrics) indicat-
ed high precision in performance estimates despite 
the temporal and cross-facility validation challenges. 
Time-series aware cross-validation using expanding 
windows confirmed prediction stability over time 
with no significant performance degradation across 
the 18-month study period (Levene's test: p = 0.231). 
The temporal lead time analysis demonstrated con-
sistent 48-hour advance warning capability with nar-
row confidence intervals [45.8, 48.6 hours], validat-
ing the practical reliability of the prediction timing. 
Multiple comparison corrections using the Bonfer-
roni method maintained statistical significance for all 
primary comparisons (adjusted α = 0.005), confirm-
ing that the reported improvements were robust to 
multiple testing considerations. The comprehensive 
statistical validation provided strong evidence sup-
porting the practical and statistical significance of the 
hybrid CNN-LSTM predictive maintenance frame-
work across all evaluated dimensions [34].

This work used data from three Saudi Arabian 
facilities and four equipment strata under an IIoT 

architecture with continuous sensing. The design im-
proves internal consistency yet introduces geograph-
ic and instrumentation constraints; generalization 
beyond similarly instrumented contexts should be 
demonstrated prospectively. Although transport-lay-
er loss was low (< 0.03%) and overall missingness 
modest (2.1%), operational outages can induce 
non-random missingness that imputation cannot ful-
ly remove [27]. Sensor modalities differ in their noise 
envelopes: acoustic emission is susceptible to ambi-
ent and impact noise, infrared measurements can ex-
hibit thermal lag under fast transients, and electrical 
signatures reflect load and power-quality variations. 
The pipeline addressed these risks via edge-level 
validation, explicit outlier handling, and a learning 
setup that emphasizes robust, multi-modal patterns; 
in practice, feature-importance analyses align with 
this expectation by showing dominant contributions 
from vibration-derived indicators with complemen-
tary value from temperature gradients and electrical 
harmonics. Finally, failures are rarer than normal 
operation; class-weighting mitigates imbalance during 
training, but some influence on precision–recall 
trade-offs may persist at fixed lead times. None of 
these considerations change the reported estimates; 
they delineate the conditions under which the results 
are most reliable and where future extensions (e.g., 
explicit sensor-health modeling and missing-not-at-
random diagnostics) would further strengthen appli-
cability [39].

Comparison Statistical Test Test Statistic p-value Effect Size (Cohen's d) 95% CI

Performance Metrics

Hybrid vs. Random Forest McNemar's Test χ² = 2,847.3 < 0.001 1.86 [1.79, 1.93]

Hybrid vs. SVM McNemar's Test χ² = 2,921.7 < 0.001 1.92 [1.85, 1.99]

Hybrid vs. CNN Only McNemar's Test χ² = 1,567.2 < 0.001 1.24 [1.18, 1.30]

Hybrid vs. LSTM Only McNemar's Test χ² = 1,289.4 < 0.001 1.08 [1.02, 1.14]

Hybrid vs. Threshold McNemar's Test χ² = 4,123.8 < 0.001 2.31 [2.23, 2.39]

Cross-Facility Validation

Within vs. Cross-Facility Paired t-test t = 3.72 0.003 0.34 [0.12, 0.56]

Facility Performance Variation ANOVA F = 2.18 0.118 - -

Economic Impact

Maintenance Cost Reduction Wilcoxon Signed-Rank W = 4,267 < 0.001 1.54 [1.47, 1.61]

Downtime Reduction Wilcoxon Signed-Rank W = 3,892 < 0.001 1.43 [1.36, 1.50]

OEE Improvement Paired t-test t = 8.94 < 0.001 1.78 [1.69, 1.87]

Temporal Performance

Lead Time Consistency One-sample t-test t = 14.7 < 0.001 - [45.8, 48.6]

Prediction Stability Levene's Test F = 1.43 0.231 - -

Table 6. Statistical validation results for the hybrid CNN-LSTM framework performance improvements, including significance tests, 
effect sizes, and confidence intervals for comparisons with baseline methods and economic impact metrics.
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5. Conclusions

This investigation successfully developed and 
validated a novel hybrid CNN-LSTM framework 
for predictive maintenance across 127 industrial ma-
chines and 1.2 million sensor measurements over 18 
months, demonstrating substantial improvements in 
failure prediction accuracy and economic impact. 
The hybrid CNN-LSTM framework achieved 94.3% 
accuracy (95% CI: [93.8%, 94.8%]), 92.7% precision, 
and 96.1% recall, substantially exceeding the 80% 
industrial threshold. The framework maintained 
2.1% false positive and 3.9% false negative rates, 
with AUC-ROC of 0.987. Comparative analysis 
demonstrated statistically significant superiority over 
all baseline methods. The hybrid approach outper-
formed Random Forest by 15.4 percentage points (p 
< 0.001, Cohen's d = 1.86), Support Vector Machines 
by 15.1 percentage points (p < 0.001, Cohen's d = 
1.92), and threshold-based monitoring by 25.9 per-
centage points (p < 0.001, Cohen's d = 2.31). The 
integrated architecture surpassed standalone LSTM 
by 7.0 percentage points and CNN-only by 8.6 per-
centage points, validating synergistic benefits. Tem-
poral prediction capabilities showed 78.6% of fail-
ures correctly predicted 48+ hours in advance, with 
mean lead time of 47.2 hours (95% CI: [45.8, 48.6]). 
The data integration framework processed 2.4 mil-
lion data points per hour with 12.7 milliseconds end-
to-end latency and <0.03% data loss rates. Cross-fa-
cility validation confirmed robust generalization with 
only 2-3 percentage point degradation across differ-
ent manufacturing environments (91.5%-92.5% vs. 
93.8%-95.1% within-facility accuracy). Economic as-
sessment revealed 28% maintenance cost reduction, 
37% downtime decrease, and 15% Overall Equip-
ment Effectiveness improvement (73.2% to 84.1%). 
Return on investment reached 183% with 6.5-month 
payback period.

While these results indicate enterprise-scale vi-
ability, industrial rollouts encounter practical chal-
lenges—data readiness and consistent failure taxono-
mies, partial sensorization, legacy system integration, 
concept drift, alarm management, network reliabil-
ity, cybersecurity, ROI sensitivity, and regulatory 
constraints. Consistent with the design choices and 
cross-facility results in this work, we recommend a 
risk-based sensor strategy, standardized IIoT inter-
faces, monitored model lifecycle management with 
shadow deployments, tiered alerting with interpret-
ability, authenticated low-loss streaming with edge 
validation, and site-specific sensitivity analyses. These 
measures are intended to preserve the reported 48-

hour warning horizon and low false-positive rates 
while supporting sustainable adoption across hetero-
geneous facilities. The findings establish hybrid deep 
learning architectures' superiority over traditional ap-
proaches for industrial predictive maintenance. The 
substantial performance improvements and robust 
cross-facility generalization indicate that the frame-
work captures universal equipment degradation 
patterns, supporting broader industrial applicability. 
The demonstrated real-time processing capabilities 
and economic validation provide empirical evidence 
for enterprise-scale deployment viability.

Study limitations include the 18-month evalua-
tion period, geographic constraint to Saudi Arabian 
facilities, and focus on specific equipment categories. 
Future research should pursue extended longitudinal 
studies, multi-regional validation, advanced sensor 
fusion methodologies, and explainable AI develop-
ment for enhanced industrial adoption. To guide 
deployment at scale, future work will operationalize 
sensor-health diagnostics, domain-adaptation rou-
tines, and edge-aware model variants to sustain the 
48-hour warning horizon under sensor anomalies, 
environmental shifts, and fleet growth. In addition, 
while stratified sampling and proportional alloca-
tion were used to enhance representativeness across 
equipment classes within the three IIoT-enabled fa-
cilities, external validity beyond similarly instrument-
ed industrial contexts should be established in future 
work. This study’s evidence is bounded by (i) sen-
sor health assumptions—undetected drift, calibration 
bias, and intermittent faults can perturb feature distri-
butions and inflate false positives at fixed lead time; 
(ii) environmental variability—temperature/humidity 
excursions, electromagnetic interference, and rapid-
ly shifting product mixes can induce non-stationarity 
that challenges stable thresholds and model calibra-
tion; and (iii) scalability constraints—site-to-site het-
erogeneity, uneven network quality, and edge com-
pute quotas may limit transferability and sustained 
real-time performance as the monitored fleet grows.

Building on these findings, next steps include: (1) 
sensor-health modeling (self-calibration tests, redun-
dancy checks, and drift detectors integrated as inputs 
to reduce false positives during sensor anomalies); (2) 
adaptive generalization (domain adaptation and pe-
riodic fine-tuning with shadow deployments to track 
regime shifts and product-mix changes); (3) scalable 
orchestration (hierarchical, edge-aware scheduling 
and lightweight model variants for constrained nodes, 
with resource monitors to preserve latency budgets); 
(4) robustness to environment (augmentation with 
ambient/context channels and stress-testing under 
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induced noise/EMI); and (5) learning under weak 
labels (semi-/self-supervised updates fed by CMMS 
outcomes to improve rare-failure recall without ex-
panding annotation burden).
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