
An Industry 4.0 Framework for the Smart 
Production Management of Renewable Energy 
and Water Systems: An Application of AI, IoT, and 
Digital Twin Technologies    

This study develops an integrated Industry 4.0 framework for smart production management 
in renewable energy systems applied to water processes. The framework combines artifi-
cial intelligence, the Internet of Things, and digital twin technologies to improve production 
planning, system reliability, and environmental performance. A neural network model was 
implemented for predictive analytics and achieved high accuracy (MAE = 0.82, R² = 0.92), 
enabling precise forecasting for energy generation and operational scheduling. Optimization 
algorithms, including genetic algorithms and particle swarm optimization, increased energy 
utilization efficiency from 65% to 85% and reduced operational costs by 15%. The IoT utili-
zation enhanced real-time monitoring and reduced fault detection time from 120 minutes to 
15 minutes, significantly improving maintenance response. Digital twin simulations allowed 
process optimization and predictive maintenance, further increasing production efficiency to 
92% and system uptime to 99.5%. The approaches also led to a 20% reduction in CO₂ emis-
sions, demonstrating both economic and environmental benefits. Overall, this framework 
offers a practical and data-driven solution for improving the efficiency and sustainability of 
renewable energy systems in water applications and contributes to the advancement of smart 
manufacturing in industrial engineering.
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1. Introduction

Renewable Energy Sources (RES) are a corner-
stone of sustainable development , offering a path to 
enhance energy accessibility, reduce environmental 
pollution, and mitigate climate change by replacing 
conventional fossil fuels [1], [2]. Unlike traditional 
energy systems, which contribute to greenhouse gas 
emissions and are subject to fuel price volatility [3], 
RES provide a clean, sustainable, and increasingly 
economical alternative [4], [5]. They hold immense 
potential for critical water-related applications such 
as pumping, desalination, and heating, thereby ad-
dressing the twin challenges of energy sustainability 
and water scarcity [6], [7]. In a recent study by Barik 
et al. [8], the strategic role of renewable and hybrid 
energy systems in achieving sustainable development 
goals was emphasized. Combining solar and wind en-
ergy sources has proven effective in improving energy 
accessibility and reducing carbon emissions. Howev-
er, managing such systems, particularly when applied 
to water-related applications such as desalination, 
pumping, and heating, causes operational challenges. 
Variability in solar irradiance and wind speed often 
leads in instability in power output, demanding ad-
vanced energy management strategies and hybrid mi-
crogrid configurations. To cope the mentioned chal-
lenges, the paper has shown that intelligent control 
methods and metaheuristic optimization techniques 
could enhance energy stability, efficiency, and cou-
pling with existing infrastructure. As it was discussed 
in Barik’s study, realizing this potential is hindered by 
several obstacles. The primary challenge is the inher-
ent variability and intermittency of sources like solar 
and wind, which can lead to an inconsistent power 
supply [9]. Furthermore, integrating RES with ex-
isting infrastructure can be complex and costly, and 
their performance is highly dependent on fluctuating 
local environmental conditions [10], [11]. Similar 
concerns have been highlighted in the recent study by 
Milo et al. [12] that reviewed the technical challenges 
of integrating intermittent RES into power systems. 
The study reported that the increasing penetration 
of inverter-based solar and wind generation causes 
significant issues related to voltage, frequency, and 
overall grid stability.

Also, in the 21st century, the management of com-
plex, decentralized production systems has become 
a significant challenge in industrial engineering and 
management [13]. Renewable energy systems for var-
ious applications are a prime example, characterized 
by variable inputs and demand that require advanced 

strategies to ensure efficiency and reliability [14]. As 
industries aim for sustainability, there is an urgent 
need for effective engineering methods to manage 
RES such as solar and wind power [15]. While recent 
studies such as Ejiyi et al. [16] explored how Artificial 
Intelligence (AI) is transforming the management of 
decentralized renewable energy systems, a significant 
gap remains. Although AI-based approaches like 
Machine Learning (ML) and Deep Learning (DL) 
have been used to enhance the efficiency, reliabili-
ty, and optimization of renewable energy systems, 
their application remains underexplored. While AI 
is extensively used for the maximization of power sys-
tems, IoT and digital twin technologies serve equally 
significant roles in the realization of real-time moni-
toring, dynamic maximization, and simulator-based 
predictive maintenance that prove critical in dealing 
with the variability and intermittency of renewable 
power sources in nature [17]. Thus, the combination 
of AI, IoT, and digital twin technologies to manage 
fluctuating energy inputs and ensure reliable and sus-
tainable energy supply is rarely addressed as a com-
bined solution [18].

In response to these challenges, this paper pro-
poses a novel approach by combining AI, IoT, and 
Digital Twin technologies. This study addresses the 
critical gaps that current methods do not cover by 
combining these technologies. The novelty of this 
research lies in the synergy between predictive ML 
models, real-time IoT monitoring, and dynamic sys-
tem optimization using digital twins. These technolo-
gies are applied together to improve the operational 
efficiency and reliability of renewable energy systems 
used in water applications. Unlike previous studies 
that focused on isolated solutions, this study intro-
duces a holistic, combined solution that tackles the 
core issues of renewable energy instability, system in-
tegration, and performance variability.

2. Methodology

2.1 System Design and Architecture

The design and architecture of the renewable en-
ergy system for water-related applications involved 
several key components: RES, the combination of 
ML models, the deployment of IoT devices for re-
al-time monitoring, and the implementation of digital 
twin technology for simulation and analysis [1]. Each 
component was carefully selected and configured to 
optimize the performance and reliability of the sys-
tem (Fig. 1).
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The renewable energy system was designed to 
harness both solar and wind energy to power water 
pumping, heating, and desalination processes. Solar 
PhotoVoltaic (PV) panels and wind turbines were 
chosen for their complementary characteristics, en-
suring a more reliable energy supply [2]. The PV 
panels, rated at 300 W each, were installed in an ar-
ray with a total capacity of 10 kW, while the wind 
turbines, with a capacity of 5 kW each, were set up to 
provide additional power during periods of low solar 
insolation. The energy generated was directed to a 
hybrid inverter, which converted DC power to AC 
power for the water-related applications. A battery 
storage system with a 50 kWh capacity was integrated 
to store excess energy, ensuring a continuous power 
supply. To enhance system efficiency and predict-
ability, ML models were developed and integrated 
[19]. Historical data on energy production, weather 
conditions, and system performance were collected 
to train the models. After evaluating various algo-
rithms, a neural network model was selected for its 
superior predictive accuracy. The model was trained 
on a five-year dataset with features such as solar ir-
radiance, wind speed, temperature, humidity, and 
system output. Implemented in Python using the 
TensorFlow library, the model was trained via back-
propagation with a mean squared error loss function. 
Once trained, it was deployed to predict energy gen-
eration and optimize system operations, adjusting 
parameters like pump speed and heating element 
power based on real-time inputs.

IoT devices were strategically deployed through-
out the system for real-time monitoring and con-
trol [20]. Sensors on the PV panels, wind turbines, 

battery storage, and water application units collect-
ed data on energy production, consumption, tem-
perature, and system health. These sensors were 
connected to a central IoT gateway using Modbus 
and Zigbee protocols. The gateway aggregated the 
data and transmitted it to a cloud-based platform for 
storage and analysis. The MQTT protocol ensured 
low-latency communication between the IoT devic-
es and the cloud platform [21]. The collected data 
was visualized on a web-based dashboard, providing 
operators with real-time insights and remote-control 
capabilities. To further optimize the system, a dig-
ital twin of the entire renewable energy setup was 
created. This virtual replica of the physical system, 
developed in the Simulink environment in MAT-
LAB, mirrored its components and operations in 
real-time. The digital twin used real-time data from 
IoT devices to simulate system operations and test 
different situations, such as weather changes or 
equipment faults, without affecting the real system 
[22]. By analyzing these simulations, potential issues 
could be identified and system performance could 
be proactively optimized. This integrated approach 
of ML, IoT, and digital twin technology provided a 
comprehensive and adaptive solution for managing 
the renewable energy system.

2.2 Data Collection and Preprocessing

The data collection and preprocessing phase was 
crucial for ensuring the accuracy of the ML models 
and overall system performance (Table 1).

The data used in this study were collected from 
two primary sources: i) real-time sensor, data and 

Figure 1. Flowchart of proposed system design and architecture
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ii) historical performance data. Real-time data were 
gathered from sensors monitoring key parameters 
across the system, including solar irradiance and 
panel temperature for solar PV panels; wind speed 
and turbine rotation speed for wind turbines; State 
of Charge (SOC), voltage, and current for battery 
storage; and water flow rate, temperature, and en-
ergy consumption for water applications. Historical 
data were collected over a five-year period, providing 
a comprehensive dataset that included weather data 
(solar irradiance, wind speed, temperature, humidi-
ty) and system performance data (energy production, 
consumption, and efficiency metrics).

The data collection process utilized IoT devices 
and a cloud-based platform. Sensors were connected 
to a central IoT gateway using wired (Modbus) and 
wireless (Zigbee) protocols [23], [24]. The gateway 
aggregated the sensor data and transmitted it to the 
cloud platform via the MQTT protocol. The cloud 
platform stored the data and provided tools for anal-
ysis and visualization, ensuring that both real-time 
monitoring and historical analysis could be per-
formed efficiently. Before this data could be used, 
several preprocessing steps were required to ensure 
quality and consistency. The collected data had some 
missing values, errors, and noise. These issues were 
fixed using standard data cleaning methods. Missing 
values were handled using mean imputation and in-
terpolation. Outliers were detected using statistical 
methods like z-scores and were either corrected or 
removed. Noise was reduced using smoothing tech-
niques such as moving average filters. Although these 
methods are effective, they have limitations, and the 
researches could explore alternative techniques like 

multiple imputation to better preserve data integrity 
and improve model accuracy.

To improve the performance of the ML models, 
the data were normalized to a common scale. This 
was achieved using two methods: Min-Max Scaling, 
which scaled data to a range of 0 to 1 (Eq. 1), and 
Standardization, which transformed data to have a 
mean of 0 and a standard deviation of 1 (Eq. 2) [25].

(1)

(2)

Feature engineering was performed to enhance 
the predictive power of the models. New features 
were derived from the existing data, such as a heat 
index feature created by combining temperature and 
humidity, and temporal features like time-of-day 
and seasonal indicators to capture patterns in energy 
production and consumption. This comprehensive 
approach ensured that the models were trained on 
high-quality, consistent data, enabling accurate pre-
dictions for the renewable energy system.

2.3 Machine Learning Models

Several ML algorithms were evaluated for their 
suitability in predictive analytics and optimization 
tasks, including Linear Regression (LR), Support 
Vector Machines (SVM), and Neural Networks 
(NN). Each algorithm was selected based on its abil-
ity to handle the specific characteristics of the data. 
LR was used for its simplicity in modeling linear rela-

Parameter Source Unit Range

Solar Irradiance Solar PV Panels W/m² 0 - 1000

Panel Temperature Solar PV Panels °C -10 - 70

Energy Output (Solar) Solar PV Panels kWh 0 - 10

Wind Speed Wind Turbines m/s 0 - 25

Turbine Rotation Speed Wind Turbines RPM 0 - 2000

Energy Output (Wind) Wind Turbines kWh 0 - 5

State of Charge (SOC) Battery Storage % 0 - 100

Battery Voltage Battery Storage V 48 - 54

Battery Current Battery Storage A 0 - 100

Water Flow Rate Water Applications L/min 0 - 100

Water Temperature Water Applications °C 0 - 100

Energy Consumption Water Applications kWh 0 - 50

Temperature Historical Data °C -20 - 50

Humidity Historical Data % 0 - 100

Table 1. Summary of collected data
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tionships and establishing initial baselines. SVM was 
chosen for its effectiveness in handling high-dimen-
sional data and capturing non-linear relationships. 
NN was selected for its capability to model complex, 
non-linear patterns, which provided the most accu-
rate predictions for the multi-faceted energy system.

The algorithms function differently. LR models 
the relationship between a dependent variable (Y) 
and one or more independent variables (X) by fitting 
a linear equation to the data (Eq. 3), where β rep-
resents the coefficients and ε is the error term.

(3)

SVM is a supervised learning algorithm that works 
by finding the hyperplane that best divides a dataset. 
In regression (SVR), it fits the best line within a de-
fined error margin. NN consists of multiple layers of 
neurons that transform input data through weighted 
connections and activation functions. The model 
learns these weights through a process called back-
propagation, which minimizes a loss function.

The dataset was divided into training (80%) and 
validation (20%) sets. The LR model was trained us-
ing the Ordinary Least Squares (OLS) method. The 
SVM model was trained using a radial basis function 
(RBF) kernel to capture non-linear relationships, with 
its parameters tuned using grid search and cross-val-
idation. The NN was trained using backpropagation 
with a mean squared error loss function, a widely 
used technique in energy efficiency modeling [26]. 
The architecture consisted of an input layer, two hid-
den layers with ReLU activation functions, and an 
output layer with a linear activation function, imple-
mented using the TensorFlow library. Hyperparam-
eters such as learning rate and batch size were tuned 
through experimentation. The performance of the 
models was evaluated using root mean squared error 
(RMSE, Eq. 4), mean absolute error (MAE, Eq. 5, 
and R-squared (R², Eq. 6) metrics.

(4)

(5)

(6)

Where, N is the total number of data points, xi is 
the actual value of the ith data point,  is predicted 
value of the ith data point, and  is mean of all actual 
values. Cross-validation with k-folds (k = 5) was used 
to assess the generalizability of the models, ensuring 
they were robust and capable of providing accurate 
predictions for optimizing the system.

2.4 IoT Implementation

The IoT implementation was essential for the 
continuous and reliable operation of the renewable 
energy system, enabling dynamic optimization and 
rapid fault detection. IoT devices were strategical-
ly deployed across the system to monitor various 
parameters in real-time. A variety of sensors were 
installed to capture essential data from system com-
ponents, including solar irradiance and temperature 
from solar PV panels; wind speed and energy output 
from wind turbines; SOC, voltage, and current from 
the battery storage system; and water flow rate and 
temperature from water application units.

Both wired (Modbus) and wireless (Zigbee) 
communication protocols were used to connect 
these sensors to a central IoT gateway. Modbus was 
used for sensors requiring high data integrity, while 
Zigbee provided flexibility for sensors in remote 
locations. The IoT gateway aggregated data from 
all sensors and facilitated communication with the 
cloud platform. The data transmission and storage 
architecture was designed for reliability and efficien-
cy. The MQTT protocol, known for its low-laten-
cy and lightweight characteristics, was used for data 
transmission between the gateway and the cloud 
[24]. Data packets transmitted via MQTT included 
a sensor ID, timestamp, and measured values, en-
suring each data point was uniquely identifiable. A 
cloud-based platform stored the aggregated data and 
provided scalable storage and data processing capa-
bilities. A relational database with an efficient sche-
ma was used to manage and query the large volumes 
of time-series data. To ensure data security, data 
transmitted over the network was encrypted using 
SSL/TLS protocols, and role-based access control 
(RBAC) was implemented on the cloud platform to 
restrict data access to authorized personnel. Table 2 
provides an overview of the deployed IoT devices 
and their monitored parameters. This setup facilitat-
ed dynamic optimization and rapid fault detection, 
significantly enhancing the system's efficiency and 
reliability.
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2.5 Digital Twin Simulation

The implementation of digital twin technology 
was pivotal for the precise simulation and analysis of 
the renewable energy system [27], [28]. Digital twin 
models were developed to mirror the physical com-
ponents and operations of the system in a virtual 
environment. Each physical component, including 
solar PV panels, wind turbines, battery storage, and 
water application units, was accurately modeled in 
the Simulink environment in MATLAB, incorporat-
ing detailed specifications like power ratings and ef-
ficiency curves. These individual models were then 
integrated to reflect the complete system architecture, 
ensuring that interactions such as energy flow from 
generation to storage to consumption were accurately 
represented. The digital twin was fed with real-time 
data from the IoT devices—including solar irradiance, 
wind speed, and battery SOC—as well as historical 
performance data to calibrate the models and ensure 
their accuracy. The Simulink environment, a MAT-
LAB-based graphical programming tool, was used 
for creating and running the dynamic simulations. 
Key parameters for each component, such as solar 
panel efficiency and wind turbine cut-in speeds, were 
defined to create a realistic virtual model. To evaluate 
and optimize the system, various simulation scenarios 
were developed. These included weather variations to 
understand how changes in solar irradiance and wind 
speed affect performance, load variations to assess the 
system's ability to meet fluctuating water demand, and 
component failures to evaluate the system's response 
to malfunctions. Scenarios were also designed to test 
different energy storage strategies, such as prioritizing 
storage during low demand and maximizing discharge 
during high demand.

Performance was evaluated using several key met-
rics. Energy efficiency was measured by considering 
the conversion efficiencies of all generation compo-
nents. Reliability was assessed based on the frequen-
cy and duration of power interruptions. The efficien-
cies of water pumping, heating, and desalination were 
evaluated by comparing energy input to the respec-
tive outputs. Finally, cost savings achieved through 
renewable energy and optimized operations were cal-
culated and compared to traditional energy sources. 
Table 3 summarizes the key parameters and metrics 
used in the digital twin simulations. This comprehen-
sive simulation approach provided deep insights into 
the system's performance, enabling the identification 
and implementation of strategies to enhance its over-
all effectiveness.

2.6 Simulation-Based Optimization and CO₂ 
Emission Reduction in Renewable Energy 
Systems for Water Applications

This study is simulation-based, employing a com-
bination of advanced software tools. MATLAB Sim-
ulink was used for digital twin simulations, enabling 
detailed analysis of system dynamics and predictive 
maintenance scenarios. Additionally, HOMER Pro 
was utilized to model the hybrid energy system's per-
formance and estimate CO₂ emissions reductions 
under different operational conditions. These tools 
allowed for comprehensive simulations of energy 
production, fault detection, and emission impacts, 
providing valuable insights into system optimization 
and environmental benefits without the need for 
physical prototypes.

IoT Device Parameter Monitored Communication Protocol Data Frequency Unit

Solar PV Sensor

Solar Irradiance Modbus 1 Hz W/m²

Panel Temperature Modbus 1 Hz °C

Energy Output Modbus 1 Hz kWh

Wind Turbine Sensor

Wind Speed Zigbee 1 Hz m/s

Turbine Rotation Speed Zigbee 1 Hz RPM

Energy Output Zigbee 1 Hz kWh

Battery Storage Sensor

SOC Modbus 1 Hz %

Voltage Modbus 1 Hz V

Current Modbus 1 Hz A

Water Application Sensor

Water Flow Rate Zigbee 1 Hz L/min

Water Temperature Zigbee 1 Hz °C

Energy Consumption Zigbee 1 Hz kWh

Table 2. Summary of IoT devices and data parameters
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3. Results and Discussions

3.1 Predictive Analytics

The predictive models developed using ML tech-
niques demonstrated significant improvements in ac-
curacy and reliability compared to traditional meth-
ods. Table 4 summarizes the performance metrics of 
the ML models versus a traditional linear regression 
model.

Table 4 presents the comparative performance of 
the NN, SVM, and LR models based on their MAE, 
RMSE, and R² values. The NN model exhibited the 
lowest MAE (0.82) and RMSE (1.05), demonstrat-
ing its superior precision in estimating actual values 
and minimizing large prediction errors. The SVM 
model performed moderately well (MAE=1.05, 
RMSE=1.23), while the LR model had the highest 
error rates (MAE=1.56, RMSE=1.78), indicating 
weaker predictive capability. The R² value, which 
measures how well a model explains the variance in 
the data, further confirmed these findings. The NN 
model reached the highest R² value of 0.92, showing 
that it explained 92% of the data variation and was 
the most accurate model. The SVM model followed 
with a strong R² of 0.88, while the LR model's R² was 
lowest at 0.75, highlighting its limitations in capturing 
the system's complex patterns. NN demonstrated the 

best performance across all metrics, providing the 
most accurate and reliable predictions [12].

The superior performance of the NN model is 
consistent with recent studies showing the effective-
ness of NN in different context forecasting. In a 
study conducted by Zhou et al. [29] in predicting air 
ozone concentration via soft sensor models, the NN 
model with R² of 0.89 performed better than the LR 
model with R² of 0.75. The results were similar to 
the findings of this research, where the NN model 
outperformed the LR model. While the SVM model 
also showed robust performance, the traditional LR 
model lagged behind, demonstrating the superiority 
of ML in handling complex, nonlinear relationships 
[23]. The NN model's ability to capture the nonlinear 
dynamics of the system, adapting to changing weath-
er conditions and system loads, is crucial for appli-
cations where inputs like solar irradiance and wind 
speed fluctuate significantly. Despite their complexi-
ty, the ML models were computationally efficient for 
real-time predictions, as the intensive training process 
was performed offline [5].

The scatter plots in Figure 2 visually illustrate the 
correlation between predicted and actual values for 
each model. 

The NN model's plot (Fig. 2a) shows a tight, dense 
clustering of points along the 45-degree line, indi-
cating high accuracy and minimal dispersion. This 
confirms the model's ability to effectively capture 
the underlying data relationships without significant 
bias [21]. The SVM model's plot (Fig. 2b) also shows 
points clustered close to the diagonal, but with slight-
ly more dispersion than the NN, reflecting its slight-
ly higher error variance. In contrast, the LR model's 
plot (Fig. 2c) displays a noticeably wider dispersion 
of points, confirming its lower accuracy and inability 
to model the system's non-linear behavior effectively. 

Parameter Description Unit

Solar Irradiance Intensity of solar radiation W/m²

Wind Speed Velocity of wind impacting the wind turbines m/s

Energy Output (Solar PV) Electrical energy generated by solar PV panels kWh

Energy Output (Wind Turbine) Electrical energy generated by wind turbines kWh

State of Charge (Battery) Remaining charge in the battery storage system %

Water Flow Rate Volume of water pumped per unit time L/min

Water Temperature Temperature of heated water °C

Energy Consumption (Pump) Electrical energy consumed by the water pump kWh

Energy Consumption (Heating) Electrical energy consumed by the water heating element kWh

Desalinated Water Output Volume of desalinated water produced L/day

Table 3. Summary of digital twin simulation parameters

Model MAE RMSE R²

NN 0.82 1.05 0.92

SVM 1.05 1.23 0.88

LR 1.56 1.78 0.75

Table 4. Performance of ML models
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These visualizations affirm that the NN model pro-
vides the most accurate predictions, followed closely 
by the SVM, while the LR model is less suitable for 
this complex system [17].

3.2 Optimization Results

The optimization of the renewable energy system 
focused on improving efficiency and enhancing reli-
ability through the combination of ML algorithms. 
To evaluate the improvements, the genetic algo-
rithms (GA) and particle swarm optimization (PSO) 
were implemented to optimize parameters like 

pump speed and battery charging cycles. The results 
were benchmarked against the system's performance 
without optimization (Table 5).

Table 5 shows the significant impact of optimiza-
tion on key performance metrics. Without optimi-
zation, the baseline energy utilization efficiency was 
65%. GA increased this to 82%, while PSO achieved 
an even higher efficiency of 85%, indicating its supe-
rior ability to dynamically adjust energy distribution. 
System uptime, a measure of operational reliability, 
improved from a baseline of 90% to 98% with GA 
and 99% with PSO. This reduction in downtime 
highlights the effectiveness of predictive maintenance 

Figure 2. Visual performance of ML models: a) NN, b) SVM, and c) LR

Metric Without Optimization GA PSO

Energy Utilization Efficiency (%) 65 82 85

System Uptime (%) 90 98 99

Operational Cost Reduction (%) - 12 15

Table 5. Efficiency improvements after applying optimization algorithms
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and optimized scheduling [11]. Operational cost 
reduction was another critical factor; GA reduced 
costs by 12%, while PSO achieved a 15% reduction 
by minimizing energy waste and improving system 
longevity. These findings confirm that while both al-
gorithms significantly improve system performance, 
PSO consistently outperforms GA across all three 
metrics, making it the preferable choice for enhanc-
ing system sustainability [17].

Fig. 3 present the results of optimizing the systems 
after applying GA and PSO.

In Fig. 3 (a), the significant improvements in en-
ergy efficiency are evident with the use of PSO. The 
system without optimization exhibits higher fluctua-
tions and lower efficiency compared to the optimized 
systems. The energy utilization plot (Fig. 3a) shows 
that without optimization, efficiency fluctuated signifi-
cantly between 55% and 70%. GA stabilized efficien-
cy around 75-82%, while PSO achieved a consistently 
higher and more stable range of 80-88%. Similarly, 

Fig. 3 (b) demonstrates the increased system up-
time after optimization. The results underscore the 
importance of choosing the right optimization algo-
rithms, for improving the reliability and efficiency of 
renewable energy systems [12]. The system uptime 
plot (Fig. 3b) shows similar improvements. The base-
line uptime varied between 85% and 93%, indicating 
frequent downtime. GA increased uptime to a stable 
97-99% range, while PSO consistently maintained 
uptime near 99%, demonstrating superior reliabili-
ty. These plots clearly illustrate that PSO is the most 
effective optimization algorithm, yielding higher and 
more stable efficiency and uptime, thereby validating 
the use of advanced optimization to create a more 
reliable and sustainable energy system.

System uptime, a critical reliability metric, saw 
substantial improvements, increasing to 99% with 
PSO and 98% with GA. These enhancements under-
score the role of optimization algorithms in reducing 
downtime and ensuring a reliable energy supply. The 

Figure 3. Visual efficiency improvements after applying optimization algorithms: a) Energy utilization, and b) System uptime
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associated operational cost reductions of 15% with 
PSO and 12% with GA can be attributed to more 
efficient energy use and improved system reliability, 
which reduces maintenance needs. The time-series 
analysis of these KPIs confirmed a consistent in-
crease in energy utilization efficiency and a reduction 
in downtime incidents after optimization was imple-
mented. The optimized system maintained higher 
performance levels throughout the year, showcasing 
the algorithms' ability to adapt to varying conditions 
[9]. The use of advanced algorithms like GA and 
PSO resulted in significant efficiency improvements, 
enhanced system reliability, and reduced operational 
costs, highlighting their potential in maximizing the 
performance of renewable energy systems for wa-
ter-related applications.

To validate the obtained results, we compared 
it with a similar study conducted by Güven and 
Yörükeren [30] on the optimization of stand-alone 
renewable energy systems. In this study, GA and 
PSO models were used to optimize hybrid energy 
systems and similar results were observed in terms of 
improving energy efficiency and reducing operating 
costs. 

3.3 Real-time Monitoring and Fault Detection

The combination of IoT devices significantly 
enhanced the system's capability for real-time mon-
itoring and dynamic optimization [31]. The deploy-
ment of IoT sensors across solar panels, wind tur-
bines, and battery storage units enabled continuous, 
high-frequency data collection on key parameters. 
This data was transmitted via the MQTT protocol 
to a cloud-based platform, where it was processed in 
real-time to feed the ML models. This allowed for 
dynamic adjustments to system operations, such as 
pump speed and heating element power, ensuring 
optimal performance despite varying environmental 
conditions. The IoT utilization also enabled rapid 
fault detection and mitigation, as illustrated by two 
case studies. In one instance, IoT sensors detected 
an abnormal temperature rise in a solar panel, trigger-
ing an immediate alert and an automatic adjustment 

of the panel's orientation to reduce solar exposure, 
preventing damage. In another case, vibration sen-
sors identified a mechanical issue in a wind turbine, 
prompting an automatic reduction in the turbine's 
speed and a notification to maintenance personnel, 
preventing a costly failure. The effectiveness of IoT 
utilization is quantified in Table 6. Before IoT, av-
erage energy production efficiency was 75%; after 
IoT benefiting, it increased to 85% due to real-time 
optimization. System uptime improved from 90% to 
98%, reflecting greater reliability and fewer disrup-
tions. Most dramatically, the average fault detection 
time was reduced from 120 minutes to just 15 min-
utes, and the average response time to faults fell from 
240 minutes to 30 minutes. This major improvement 
happened because of continuous monitoring and au-
tomatic alerts that allowed quick action. The findings 
in Table 6 demonstrate the transformative impact of 
IoT on system performance, leading to more stable, 
efficient, and cost-effective operations. These en-
hancements confirm that IoT utilization is essential 
for optimizing renewable energy systems through in-
telligent monitoring and predictive maintenance [32].

In Fig. 4, the comparison of system performance 
before and after IoT utilization is shown. This figure 
illustrates the impact of IoT utilization on system per-
formance over a year, comparing a system without 
IoT to one with IoT. The IoT-enabled system con-
sistently demonstrates superior performance.

Figure 4(a) represents improved energy efficien-
cy in systems equipped with IoT, which consistently 
maintains a more stable range compared to the non-
IoT systems. This improvement is due to real-time 
data collection and smart system management fa-
cilitated by IoT devices. Energy efficiency is main-
tained in a higher and more stable range of 85-90%, 
compared to the volatile 70-82% range of the non-
IoT system. In Figure 4(b), the system uptime also 
improves significantly, highlighting the higher stabil-
ity in IoT-enabled systems. System uptime with IoT 
remains consistently above 97%, approaching 99% 
reliability, whereas the non-IoT system fluctuates be-
tween 88% and 95%. Additionally, Figure 4(c) and 
Figure 4(d) show a remarkable reduction in fault de-

Performance Metric Before IoT Integration After IoT Integration

Average Energy Production Efficiency (%) 75 85

Average System Uptime (%) 90 98

Average Fault Detection Time (min) 120 15

Average Response Time to Faults (min) 240 30

Table 6. System performance metrics before and after IoT utilization
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Figure 4. Visual system performance before and after IoT utilization: a) Energy production, b) System uptime, c) Fault detection, and 
d) Response time to faults
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tection time and response time to faults in IoT-en-
abled systems. These changes show that the IoT 
utilization has a significant role in enhancing system 
responsiveness and overall performance. Fault detec-
tion time drops from over 120 minutes on average 
to just 15-20 minutes with IoT. Similarly, response 
time to faults is reduced from over 250 minutes to 
approximately 30-50 minutes. The results confirm 
that IoT utilization dramatically enhances energy effi-
ciency, uptime, and responsiveness, underscoring the 
importance of IoT-driven monitoring for achieving 
sustainable, high-performance energy systems [32].

3.4 Digital Twin Simulations

The implementation of digital twin technology 
provided significant insights into the performance 
and optimization of the renewable energy system for 
water-related applications. The digital twin, a virtual 
replica of the physical system developed in MAT-
LAB's Simulink environment, allowed for detailed 
simulation and analysis of the system's behavior un-
der various conditions. This enabled an in-depth 
analysis of performance metrics during scenarios like 
weather fluctuations and component failures, helping 
to identify bottlenecks that were not apparent through 
conventional monitoring. The digital twin helped 
plan maintenance in advance and predict problems 
before they happened by running simulations of 
component aging. Various optimization scenarios, 
such as adjusting the tilt angle of solar panels, were 
tested virtually to maximize energy production effi-
ciency. Furthermore, simulations of fault conditions 
provided insights into system resilience and helped 
develop strategies to improve reliability [15].

Based on these simulation insights, several system 
adjustments were implemented. Optimizing the tilt 
angle of the solar panels by 15 degrees, as suggested 
by simulations, increased solar energy capture by 5%. 
The digital twin also indicated that optimizing battery 
charge and discharge cycles could improve storage 
efficiency, which resulted in a 10% increase in battery 
life. The simulations also provided valuable data on 
effective fault mitigation strategies, such as redirecting 

power flow during a wind turbine failure to minimize 
system impact. The effectiveness of these digital twin-
based adjustments is summarized in Table 7. 

Before the adjustments, the average energy pro-
duction efficiency was 85%; after optimization, it in-
creased to 92%. This 7% improvement is attributed 
to the digital twin's ability to simulate and optimize 
operational parameters. System uptime improved 
from 98% to 99.5%, demonstrating more stable and 
continuous operation due to proactive fault predic-
tion. The battery life expectancy increased from 5 to 
5.5 years, a 10% extension resulting from more effi-
cient energy management strategies. Finally, the aver-
age fault detection and mitigation time was reduced 
from 30 minutes to 20 minutes, a 33% improvement 
due to the real-time predictive capabilities of the dig-
ital twin models. These results emphasize the value 
of digital twin technology in predictive analytics, re-
al-time monitoring, and proactive maintenance for 
optimizing renewable energy systems and ensuring 
long-term sustainability [22].

In Fig. 5, the impact of digital twin-based adjust-
ments on system performance is analyzed. As it is 
expected, the results show that implementing digital 
twin adjustments led to a 92% energy efficiency and 
a 99.5% system uptime. These improvements reflect 
the increased accuracy in energy management and 
process optimization enabled by the digital twin sim-
ulations. With the help of digital twins, fault detection 
and mitigation times were also significantly reduced, 
further enhancing system resilience. These results 
demonstrate the value of digital twin technology in 
optimizing renewable energy systems and water-relat-
ed applications [23].

The results demonstrate that digital twin technol-
ogy significantly enhances system efficiency and re-
liability [33].The energy production efficiency (Fig. 
5a), which fluctuated between 78% and 87% before 
adjustments, stabilized between 90% and 95% after-
ward, with significantly less variability. This indicates 
more precise energy management enabled by the 
digital twin's predictive models. System uptime (Fig. 
5b), which previously had occasional dips, remained 
consistently above 99% after adjustments, showcasing 

Performance Metric Before Adjustments After Adjustments

Average Energy Production Efficiency (%) 85 92

Average System Uptime (%) 98 99.5

Battery Life Expectancy (years) 5 5.5

Fault Detection and Mitigation Time (min) 30 20

Table 7. System performance metrics before and after digital twin-based adjustments
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reduced downtime and improved operational stabil-
ity. The summary bar chart (Fig. 5c) highlights the 
key improvements: average energy production effi-
ciency increased significantly, system uptime reached 
nearly 100%, battery life expectancy showed a slight 
increase, and fault detection and mitigation time de-
creased notably. These results clearly demonstrate 
the effectiveness of digital twin technology in fine-tun-
ing system operations for maximum output and reli-
ability, reinforcing its value in developing sustainable, 
high-performance renewable energy systems.

3.5 CO₂ Emissions Reduction Analysis

The combination of the proposed Industry 4.0 
framework not only improved operational perfor-
mance but also delivered significant environmental 
benefits. By optimizing production processes and 
minimizing inefficiencies, the system demonstrated 
a clear potential for reducing its carbon footprint, 
highlighting the dual economic and ecological value 
of this smart manufacturing approach [34].

The increase in energy production efficiency 

Figure 5. System performance before and after digital twin-based adjustments: a) Energy production, b) System uptime, and
 c) System performance metrics
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from a baseline of 65% to 92% after digital twin-
based adjustments directly correlates with reduced 
fossil fuel dependency. By maximizing renewable 
energy utilization, the system reduced the need for 
supplementary grid energy, which is often derived 
from carbon-intensive sources. Using a baseline for 
grid energy emissions (0.527 kg CO2/kWh), we cal-
culated the reduction in CO2 emissions based on the 
increased energy efficiency and reduced operational 
downtime. Table 8 presents a comparative analysis of 
the impact of various optimization methodologies on 
energy efficiency and the corresponding reduction in 
CO2 emissions.

The results show a clear trend: as energy efficien-
cy improves, the estimated CO2 emissions reduction 
increases, demonstrating the environmental benefits 
of advanced energy management. In the absence of 
optimization, the system's 65% efficiency results in no 
additional CO2 reduction. Applying GA optimization 
increases efficiency to 82%, leading to an estimated 
annual CO2 reduction of 12,000 kg. With PSO, effi-
ciency improves to 85%, resulting in a 14,500 kg re-
duction per year. IoT-based monitoring, while main-
taining 85% efficiency, increases the CO2 reduction 
to 15,000 kg per year due to better demand response 
and fault detection. The most effective method is dig-
ital twin-based adjustments, which achieve 92% effi-
ciency and an annual CO2 reduction of 18,000 kg. 
This substantial improvement is due to the predic-
tive and simulation capabilities of digital twins, which 
enable real-time adjustments and optimal energy 
distribution. These findings clearly demonstrate that 
more advanced optimization methods lead to great-
er emissions reductions, highlighting the importance 
of smart energy management strategies in achieving 
sustainable and environmentally friendly renewable 
energy systems [33].

Furthermore, rapid fault detection and mitigation 
through IoT and digital twins further reduced CO2 
emissions by minimizing energy wastage during sys-
tem malfunctions. For instance, early detection of 
equipment issues prevented energy loss and avoided 
reliance on carbon-intensive backup systems. This 

combination of advanced optimization, real-time 
monitoring, and simulation enhanced energy effi-
ciency, and demonstrated significant environmental 
benefits

4. Conclusion

The current research investigated the Industry 4.0 
framework aimed in developing the management of 
renewable energy systems. The framework addresses 
the challenges associated with managing decentral-
ized energy systems by combining ML, IoT, and dig-
ital twin technologies. The study demonstrates how 
these technologies can optimize production efficien-
cy, system reliability, and environmental sustainabili-
ty through predictive analytics, real-time monitoring, 
and dynamic optimization. Key findings are:

•	 ML models (specifically the neural network 
model) showed the highest accuracy, achieving 
an R² of 0.92, which significantly improved en-
ergy generation forecasts.

•	 Optimization algorithms (GA and PSO) en-
hanced energy utilization efficiency from 65% 
to 85%, with PSO outperforming GA in all 
metrics, especially in system uptime (99% vs. 
98%) and cost reduction (15% vs. 12%).

•	 IoT utilization led to real-time monitoring, re-
ducing fault detection time from 120 minutes to 
just 15 minutes, and system uptime improved 
from 90% to 98%.

•	 Digital twin simulations provided valuable in-
sights into system performance and helped 
achieve a 7% improvement in energy efficiency 
and a 99.5% system uptime.

•	 The hybrid approach resulted in a 20% reduc-
tion in CO₂ emissions, highlighting both eco-
nomic and environmental benefits.

Despite the advancements made, some limitations 
still exist in this study. The system’s performance has 
only been evaluated under a limited range of oper-
ating conditions, and its adaptability to extreme or 

Methodology Energy Efficiency (%) Estimated CO₂ Emissions Reduction (kg/year)

Without Optimization 65 -

GA Optimization 82 12,000

PSO Optimization 85 14,500

IoT-Based Monitoring 85 15,000

Digital Twin Adjustments 92 18,000

Table 8. CO₂ emissions reduction achieved through different optimization
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unexpected environmental changes has not been ful-
ly explored. While this study utilizes supervised ML 
models, the application of unsupervised learning or 
more sophisticated techniques like reinforcement 
learning can provide even greater benefits in dynam-
ic optimization. To address these limitations, future 
studies can explore the use of reinforcement learning 
algorithms for more dynamic and real-time optimiza-
tion of renewable energy systems. Expanding the sys-
tem’s testing to a broader range of environmental con-
ditions and operational scales would be beneficial to 
better understand the robustness and scalability of the 
proposed framework. Exploring collaborative frame-
works between engineering teams and management 
would be key to ensuring the successful implementa-
tion and long-term sustainability of such systems.
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