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ABSTRACT

This study develops an integrated Industry 4.0 framework for smart production management
in renewable energy systems applied to water processes. The framework combines artifi-
cial intelligence, the Internet of Things, and digital twin technologies to improve production
planning, system reliability, and environmental performance. A neural network model was
implemented for predictive analytics and achieved high accuracy (MAE = 0.82, R? = 0.92),
enabling precise forecasting for energy generation and operational scheduling. Optimization
algorithms, including genetic algorithms and particle swarm optimization, increased energy
utilization efficiency from 65% to 85% and reduced operational costs by 15%. The IoT utili-
zation enhanced real-time monitoring and reduced fault detection time from 120 minutes to
15 minutes, significantly improving maintenance response. Digital twin simulations allowed
process optimization and predictive maintenance, further increasing production efficiency to
92% and system uptime to 99.5%. The approaches also led to a 209 reduction in CO2 emis-
sions, demonstrating both economic and environmental benefits. Overall, this framework
offers a practical and data-driven solution for improving the efficiency and sustainability of
renewable energy systems in water applications and contributes to the advancement of smart
manufacturing in industrial engineering.
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1. Introduction

Renewable Energy Sources (RES) are a corner-
stone of sustainable development , offering a path to
enhance energy accessibility, reduce environmental
pollution, and mitigate climate change by replacing
conventional fossil fuels [1], [2]. Unlike traditional
energy systems, which contribute to greenhouse gas
emissions and are subject to fuel price volatlity [3],
RES provide a clean, sustainable, and increasingly
economical alternative [4], [5]. They hold immense
potential for critical water-related applications such
as pumping, desalination, and heating, thereby ad-
dressing the twin challenges of energy sustainability
and water scarcity [6], [7]. In a recent study by Barik
et al. [8], the strategic role of renewable and hybrid
energy systems in achieving sustainable development
goals was emphasized. Combining solar and wind en-
ergy sources has proven effective in improving energy
accessibility and reducing carbon emissions. Howev-
er, managing such systems, particularly when applied
to water-related applications such as desalination,
pumping, and heating, causes operational challenges.
Variability in solar irradiance and wind speed often
leads in instability in power output, demanding ad-
vanced energy management strategies and hybrid mi-
crogrid configurations. To cope the mentioned chal-
lenges, the paper has shown that intelligent control
methods and metaheuristic optimization techniques
could enhance energy stability, efficiency, and cou-
pling with existing infrastructure. As it was discussed
m Barik’s study, realizing this potential 1s hindered by
several obstacles. The primary challenge 1s the inher-
ent variability and intermittency of sources like solar
and wind, which can lead to an inconsistent power
supply [9]. Furthermore, itegrating RES with ex-
1sting infrastructure can be complex and costly, and
their performance 1s highly dependent on fluctuating
local environmental conditions [10], [11]. Similar
concerns have been highlighted 1n the recent study by
Milo et al. [12] that reviewed the technical challenges
of integrating intermittent RES into power systems.
The study reported that the increasing penetration
of mverter-based solar and wind generation causes
significant issues related to voltage, frequency, and
overall grid stability.

Also, in the 21st century, the management of com-
plex, decentralized production systems has become
a significant challenge in industrial engineering and
management [13]. Renewable energy systems for var-
1ous applications are a prime example, characterized
by variable imputs and demand that require advanced

strategies to ensure efficiency and rehability [14]. As
industries aim for sustainability, there is an urgent
need for effective engineering methods to manage
RES such as solar and wind power [15]. While recent
studies such as Ejiyi et al. [16] explored how Artificial
Intelligence (Al) 1s transforming the management of
decentralized renewable energy systems, a significant
gap remains. Although Al-based approaches like
Machine Learning (ML) and Deep Learning (DL)
have been used to enhance the efficiency, reliabili-
ty, and optimization of renewable energy systems,
their application remains underexplored. While Al
1s extensively used for the maximization of power sys-
tems, lo'T" and digital twin technologies serve equally
significant roles in the realization of real-time moni-
toring, dynamic maximization, and simulator-based
predictive maintenance that prove critical in dealing
with the variability and intermittency of renewable
power sources in nature [17]. Thus, the combination
of Al, IoT, and digital twin technologies to manage
fluctuating energy inputs and ensure reliable and sus-
tamable energy supply 1s rarely addressed as a com-
bined solution [18].

In response to these challenges, this paper pro-
poses a novel approach by combining Al, IoT, and
Digital Twin technologies. This study addresses the
critical gaps that current methods do not cover by
combining these technologies. The novelty of this
research lies i the synergy between predictive ML
models, real-time Io'T monitoring, and dynamic sys-
tem optimization using digital twins. These technolo-
gies are applied together to improve the operational
efficiency and reliability of renewable energy systems
used 1n water applications. Unlike previous studies
that focused on isolated solutions, this study intro-
duces a holistic, combined solution that tackles the
core 1ssues of renewable energy instability, system in-
tegration, and performance variability.

2. Methodology

2.1 System Design and Architecture

The design and architecture of the renewable en-
ergy system for water-related applications mvolved
several key components: RES, the combimation of
ML models, the deployment of IoT devices for re-
al-time monitoring, and the implementation of digital
twin technology for simulation and analysis [1]. Each
component was carefully selected and configured to
optimize the performance and reliability of the sys-
tem (Fig. 1).
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Figure 1. Flowchart of proposed system design and architecture

The renewable energy system was designed to
harness both solar and wind energy to power water
pumping, heating, and desalination processes. Solar
PhotoVoltaic (PV) panels and wind turbines were
chosen for their complementary characteristics, en-
suring a more reliable energy supply [2]. The PV
panels, rated at 300 W each, were mstalled in an ar-
ray with a total capacity of 10 kW, while the wind
turbines, with a capacity of 5 kW each, were set up to
provide additional power during periods of low solar
msolation. The energy generated was directed to a
hybrid mverter, which converted DC power to AC
power for the water-related applications. A battery
storage system with a 50 KkWh capacity was integrated
to store excess energy, ensuring a continuous power
supply. To enhance system efficiency and predict-
ability, ML, models were developed and integrated
[19]. Historical data on energy production, weather
conditions, and system performance were collected
to train the models. After evaluating various algo-
rithms, a neural network model was selected for its
superior predictive accuracy. The model was trained
on a five-year dataset with features such as solar ir-
radiance, wind speed, temperature, humidity, and
system output. Implemented in Python using the
TensorFlow library, the model was trained via back-
propagation with a mean squared error loss function.
Once trained, it was deployed to predict energy gen-
eration and optimize system operations, adjusting
parameters like pump speed and heating element
power based on real-time inputs.

IoT devices were strategically deployed through-
out the system for real-time monitoring and con-
trol [20]. Sensors on the PV panels, wind turbines,

battery storage, and water application units collect-
ed data on energy production, consumption, tem-
perature, and system health. These sensors were
connected to a central IoT gateway using Modbus
and Zigbee protocols. The gateway aggregated the
data and transmitted it to a cloud-based platform for
storage and analysis. The MQTT protocol ensured
low-latency communication between the Io'T devic-
es and the cloud platform [21]. The collected data
was visualized on a web-based dashboard, providing
operators with real-time insights and remote-control
capabilities. To further optimize the system, a dig-
ital twin of the entire renewable energy setup was
created. This virtual replica of the physical system,
developed in the Simulink environment in MAT-
LAB, mirrored its components and operations in
real-time. The digital twin used real-ime data from
10T devices to simulate system operations and test
different situations, such as weather changes or
equipment faults, without affecting the real system
[22]. By analyzing these simulations, potential issues
could be identified and system performance could
be proactively optimized. This integrated approach
of ML, IoT, and digital twin technology provided a
comprehensive and adaptive solution for managing
the renewable energy system.

2.2 Data Collection and Preprocessing

The data collection and preprocessing phase was
crucial for ensuring the accuracy of the ML models
and overall system performance (Table 1).

The data used in this study were collected from
two primary sources: 1) real-time sensor, data and
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Table 1. Summary of collected data

Parameter Source Unit Range
Solar Irradiance Solar PV Panels W/m2 0-1000
Panel Temperature Solar PV Panels °C -10-70
Energy Output (Solar) Solar PV Panels kwh 0-10
Wind Speed wind Turbines m/s 0-25
Turbine Rotation Speed wind Turbines RPM 0-2000
Energy Output (Wind) wind Turbines kwh 0-5
State of Charge (SOC) Battery Storage % 0-100
Battery Voltage Battery Storage \% 48 - 54
Battery Current Battery Storage A 0-100
Water Flow Rate Water Applications L/min 0-100
Water Temperature Water Applications °C 0-100
Energy Consumption Water Applications kwh 0-50
Temperature Historical Data °C -20-50
Humidity Historical Data % 0-100

1) historical performance data. Real-time data were
gathered from sensors monitoring key parameters
across the system, including solar irradiance and
panel temperature for solar PV panels; wind speed
and turbine rotation speed for wind turbines; State
of Charge (SOC), voltage, and current for battery
storage; and water flow rate, temperature, and en-
ergy consumption for water applications. Historical
data were collected over a five-year period, providing
a comprehensive dataset that included weather data
(solar mrradiance, wind speed, temperature, humidi-
ty) and system performance data (energy production,
consumption, and efliciency metrics).

The data collection process utilized IoT devices
and a cloud-based platform. Sensors were connected
to a central IoT gateway using wired (Modbus) and
wireless (Zigbee) protocols [23], [24]. The gateway
aggregated the sensor data and transmitted 1t to the
cloud platform via the MQTT protocol. The cloud
platform stored the data and provided tools for anal-
ysis and wvisualization, ensuring that both real-time
monitoring and historical analysis could be per-
formed efficiently. Before this data could be used,
several preprocessing steps were required to ensure
quality and consistency. The collected data had some
missing values, errors, and noise. These issues were
fixed using standard data cleaning methods. Missing
values were handled using mean imputation and n-
terpolation. Outliers were detected using statistical
methods like z-scores and were either corrected or
removed. Noise was reduced using smoothing tech-
niques such as moving average filters. Although these
methods are effective, they have limitations, and the
researches could explore alternative techniques like

multiple imputation to better preserve data integrity
and improve model accuracy.

To improve the performance of the ML, models,
the data were normalized to a common scale. This
was achieved using two methods: Min-Max Scaling,
which scaled data to a range of 0 to 1 (Kq. 1), and
Standardization, which transformed data to have a
mean of 0 and a standard deviation of 1 (Eq. 2) [25].

Xi = Xmin

Xnormal = (1)
Xmax — Xmin

Xi—H
Xstandard = — 2)
o

Feature engineering was performed to enhance
the predictive power of the models. New features
were derived from the existing data, such as a heat
index feature created by combining temperature and
humidity, and temporal features like time-of-day
and seasonal indicators to capture patterns in energy
production and consumption. This comprehensive
approach ensured that the models were trained on
high-quality, consistent data, enabling accurate pre-
dictions for the renewable energy system.

2.3 Machine Learning Models

Several ML algorithms were evaluated for their
suitability in predictive analytics and optimization
tasks, including Linear Regression (LR), Support
Vector Machines (SVM), and Neural Networks
(NN). Each algorithm was selected based on its abil-
ity to handle the specific characteristics of the data.
LR was used for its simplicity in modeling linear rela-
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tionships and establishing mitial baselines. SVM was
chosen for its effectiveness in handling high-dimen-
sional data and capturing non-linear relationships.
NN was selected for its capability to model complex,
non-linear patterns, which provided the most accu-
rate predictions for the multi-faceted energy system.
The algorithms function differently. LR models
the relationship between a dependent variable (Y)
and one or more independent variables (X) by fitting
a linear equation to the data (Eq. 3), where P rep-
resents the coefficients and € 1s the error term.

Y =B+ 1Xs + B Xo+ -+ BpXp + ¢ 3)

SVM is a supervised learning algorithm that works
by finding the hyperplane that best divides a dataset.
In regression (SVR), it fits the best line within a de-
fined error margin. NN consists of multiple layers of
neurons that transform input data through weighted
connections and activation functions. The model
learns these weights through a process called back-
propagation, which minimizes a loss function.

The dataset was divided into training (80%) and
validation (209%) sets. The LR model was trained us-
ing the Ordinary Least Squares (OLS) method. The
SVM model was trained using a radial basis function
(RBF) kernel to capture non-linear relationships, with
its parameters tuned using grid search and cross-val-
idation. The NN was trained using backpropagation
with a mean squared error loss function, a widely
used technique in energy efliciency modeling [26].
The architecture consisted of an mput layer, two hid-
den layers with ReLLU activation functions, and an
output layer with a linear activation function, imple-
mented using the TensorFlow library. Hyperparam-
eters such as learning rate and batch size were tuned
through experimentation. The performance of the
models was evaluated using root mean squared error
(RMSE, Eq. 4), mean absolute error (MAE, Eq. 5,
and R-squared (R?, Eq. 6) metrics.

N
1
RMSE= |2 (v~ % (4)
i=1
N
1 ~
MAE = Nz |Xi — X (5)
i=1
N (x: —&)?
RZ =1 _Zl—l ( i 1) (6)

Zliv=1 (xi - f)Z

Where, N is the total number of data points, x;1s
the actual value of the i data point, %; is predicted
value of the i data point, and X is mean of all actual
values. Cross-validation with k-folds (k = 5) was used
to assess the generalizability of the models, ensuring
they were robust and capable of providing accurate
predictions for optimizing the system.

2.4 10T Implementation

The IoT mmplementation was essential for the
continuous and reliable operation of the renewable
energy system, enabling dynamic optimization and
rapid fault detection. IoT devices were strategical-
ly deployed across the system to monitor various
parameters in real-time. A variety of sensors were
mstalled to capture essential data from system com-
ponents, including solar irradiance and temperature
from solar PV panels; wind speed and energy output
from wind turbines; SOC, voltage, and current from
the battery storage system; and water flow rate and
temperature from water application units.

Both wired (Modbus) and wireless (Zigbee)
communication protocols were used to connect
these sensors to a central IoT gateway. Modbus was
used for sensors requiring high data integrity, while
Zigbee provided flexibility for sensors in remote
locations. The IoT gateway aggregated data from
all sensors and facilitated communication with the
cloud platform. The data transmission and storage
architecture was designed for relhiability and efficien-
cy. The MQTT protocol, known for its low-laten-
cy and hightweight characteristics, was used for data
transmission between the gateway and the cloud
[24]. Data packets transmitted via MQTT included
a sensor ID, timestamp, and measured values, en-
suring each data point was uniquely identifiable. A
cloud-based platform stored the aggregated data and
provided scalable storage and data processing capa-
bilities. A relational database with an efficient sche-
ma was used to manage and query the large volumes
of time-series data. To ensure data security, data
transmitted over the network was encrypted using
SSI/TLS protocols, and role-based access control
(RBAC) was implemented on the cloud platform to
restrict data access to authorized personnel. Table 2
provides an overview of the deployed IoT devices
and their monitored parameters. This setup facilitat-
ed dynamic optimization and rapid fault detection,
significantly enhancing the system's efficiency and
reliability.
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Table 2. Summary of 10T devices and data parameters

loT Device Parameter Monitored Communication Protocol Data Frequency Unit
Solar Irradiance Modbus 1Hz W/m2
Solar PV Sensor Panel Temperature Modbus 1Hz °C
Energy Output Modbus 1Hz kwh
Wwind Speed Zigbee 1Hz m/s
Wind Turbine Sensor Turbine Rotation Speed Zigbee 1Hz RPM
Energy Output Zigbee 1Hz kwh
SOC Modbus 1Hz %
Battery Storage Sensor Voltage Modbus 1Hz \%
Current Modbus 1Hz A
Water Flow Rate Zigbee 1Hz L/min
Water Application Sensor Water Temperature Zigbee 1Hz °C
Energy Consumption Zigbee 1Hz kwh

2.5 Digital Twin Simulation

The mplementation of digital twin technology
was pivotal for the precise simulation and analysis of
the renewable energy system [27], [28]. Digital twin
models were developed to mirror the physical com-
ponents and operations of the system mn a virtual
environment. Fach physical component, including
solar PV panels, wind turbines, battery storage, and
water application units, was accurately modeled in
the Simulink environment in MATLAB, mcorporat-
ing detailed specifications like power ratings and ef-
ficiency curves. These individual models were then
mtegrated to reflect the complete system architecture,
ensuring that interactions such as energy flow from
generation to storage to consumption were accurately
represented. The digital twin was fed with real-time
data from the IoT devices—including solar irradiance,
wind speed, and battery SOC—as well as historical
performance data to calibrate the models and ensure
their accuracy. The Simulink environment, a MAT-
LAB-based graphical programming tool, was used
for creating and running the dynamic simulations.
Key parameters for each component, such as solar
panel efficiency and wind turbine cut-in speeds, were
defined to create a realistic virtual model. To evaluate
and optimize the system, various simulation scenarios
were developed. These included weather variations to
understand how changes in solar irradiance and wind
speed affect performance, load variations to assess the
system's ability to meet fluctuating water demand, and
component failures to evaluate the system's response
to malfunctions. Scenarios were also designed to test
different energy storage strategies, such as prioritizing
storage during low demand and maximizing discharge
during high demand.

Performance was evaluated using several key met-
rics. Energy efficiency was measured by considering
the conversion elfliciencies of all generation compo-
nents. Reliability was assessed based on the frequen-
cy and duration of power interruptions. The efficien-
cies of water pumping, heating, and desalination were
evaluated by comparing energy input to the respec-
tive outputs. Finally, cost savings achieved through
renewable energy and optimized operations were cal-
culated and compared to traditional energy sources.
Table 3 summarizes the key parameters and metrics
used in the digital twin simulations. This comprehen-
sive simulation approach provided deep insights into
the system's performance, enabling the 1dentification
and mimplementation of strategies to enhance its over-
all effectiveness.

2.6 Simulation-Based Optimization and CO,
Emission Reduction in Renewable Energy
Systems for Water Applications

This study 1s simulation-based, employing a com-
bination of advanced software tools. MATLAB Sim-
ulink was used for digital twin simulations, enabling
detailed analysis of system dynamics and predictive
maintenance scenarios. Additionally, HOMER Pro
was utilized to model the hybrid energy system's per-
formance and estimate CO2 emissions reductions
under different operational conditions. These tools
allowed for comprehensive simulations of energy
production, fault detection, and emission mmpacts,
providing valuable insights into system optimization
and environmental benefits without the need for
physical prototypes.
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Table 3. Summary of digital twin simulation parameters

Parameter Description Unit
Solar Irradiance Intensity of solar radiation W/m2
Wind Speed Velocity of wind impacting the wind turbines m/s
Energy Output (Solar PV) Electrical energy generated by solar PV panels kwh
Energy Output (Wind Turbine) Electrical energy generated by wind turbines kwh
State of Charge (Battery) Remaining charge in the battery storage system %
Water Flow Rate Volume of water pumped per unit time L/min
Water Temperature Temperature of heated water °C
Energy Consumption (Pump) Electrical energy consumed by the water pump kwh
Energy Consumption (Heating) Electrical energy consumed by the water heating element kwh
Desalinated Water Output Volume of desalinated water produced L/day

3. Results and Discussions

3.1 Predictive Analytics

The predictive models developed using ML tech-
niques demonstrated significant improvements n ac-
curacy and reliability compared to traditional meth-
ods. Table 4 summarizes the performance metrics of
the ML models versus a traditional linear regression
model.

Table 4. Performance of ML models

Model MAE RMSE R2

NN 0.82 1.05 0.92
SVM 1.05 1.23 0.88
LR 1.56 1.78 0.75

Table 4 presents the comparative performance of
the NN, SVM, and LR models based on their MAE,
RMSL, and R? values. The NN model exhibited the
lowest MAE (0.82) and RMSE (1.05), demonstrat-
Ing its superior precision in estimating actual values
and minimizing large prediction errors. The SVM
model performed moderately well (MALE=1.05,
RMSE=1.23), while the LR model had the highest
error rates (MAE=1.56, RMSE=1.78), indicating
weaker predictive capability. The R? value, which
measures how well a model explains the variance in
the data, further confirmed these findings. The NN
model reached the highest R? value of 0.92, showing
that 1t explaimned 92% of the data variation and was
the most accurate model. The SVM model followed
with a strong R? of (.88, while the LLR model's R? was
lowest at 0.75, highlighting its imitations in capturing
the system's complex patterns. NN demonstrated the

best performance across all metrics, providing the
most accurate and reliable predictions [12].

The superior performance of the NN model 1s
consistent with recent studies showing the effective-
ness of NN 1 different context forecasting. In a
study conducted by Zhou et al. [29] in predicting air
ozone concentration via soft sensor models, the NN
model with R? of 0.89 performed better than the LR
model with R? of 0.75. The results were similar to
the findings of this research, where the NN model
outperformed the LR model. While the SVM model
also showed robust performance, the traditional LR
model lagged behind, demonstrating the superiority
of ML in handling complex, nonlinear relationships
[23]. The NN model's ability to capture the nonlinear
dynamics of the system, adapting to changing weath-
er conditions and system loads, 1s crucial for appli-
cations where mputs like solar irradiance and wind
speed fluctuate significantly. Despite their complexi-
ty, the ML models were computationally efficient for
real-time predictions, as the intensive training process
was performed offline [5].

The scatter plots in Figure 2 visually illustrate the
correlation between predicted and actual values for
each model.

The NN model's plot (Fig. 2a) shows a tight, dense
clustering of points along the 45-degree line, indi-
cating high accuracy and minimal dispersion. This
confirms the model's ability to effectively capture
the underlying data relationships without significant
bias [21]. The SVM model's plot (Fig. 2b) also shows
points clustered close to the diagonal, but with slight-
ly more dispersion than the NN, reflecting its slight-
ly higher error variance. In contrast, the LR model's
plot (Fig. 2¢) displays a noticeably wider dispersion
of points, conlirming its lower accuracy and inability
to model the system's non-linear behavior effectively.
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Figure 2. Visual performance of ML models: a) NN, b) SVM, and c) LR

These visualizations affirm that the NN model pro-
vides the most accurate predictions, followed closely
by the SVM, while the LR model is less suitable for
this complex system [17].

3.2 Optimization Results

The optimization of the renewable energy system
focused on 1mproving elficiency and enhancing reli-
ability through the combination of ML algorithms.
To evaluate the improvements, the genetic algo-
rithms (GA) and particle swarm optimization (PSO)
were Implemented to optimize parameters like

pump speed and battery charging cycles. The results
were benchmarked against the system's performance
without optimization (Table 5).

Table 5 shows the significant impact of optimiza-
tion on key performance metrics. Without optimi-
zation, the baseline energy utilization efliciency was
65%. GA increased this to 82%, while PSO achieved
an even higher efficiency of 85%, indicating its supe-
rior ability to dynamically adjust energy distribution.
System uptime, a measure of operational reliability,
mmproved from a baseline of 90% to 98% with GA
and 999% with PSO. This reduction in downtime
highlights the effectiveness of predictive maintenance

Table 5. Efficiency improvements after applying optimization algorithms

Metric Without Optimization GA PSO
Energy Utilization Efficiency (%) 65 82 85
System Uptime (%) 90 98 99

- 12 15

Operational Cost Reduction (%)
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and optimized scheduling [11]. Operational cost
reduction was another critical factor; GA reduced
costs by 12%, while PSO achieved a 15% reduction
by minimizing energy waste and improving system
longevity. These findings confirm that while both al-
gorithms significantly improve system performance,
PSO consistently outperforms GA across all three
metrics, making it the preferable choice for enhanc-
g system sustainability [17].

Fig. 3 present the results of optimizing the systems
after applying GA and PSO.

In Fig. 3 (a), the significant improvements in en-
ergy efficiency are evident with the use of PSO. The
system without optimization exhibits higher fluctua-
tions and lower efficiency compared to the optimized
systems. The energy utilization plot (Fig. 3a) shows
that without optimization, efficiency fluctuated signifi-
cantly between 55% and 709%. GA stabilized efficien-
cy around 75-829%, while PSO achieved a consistently
higher and more stable range of 80-88%. Similarly,

Fig. 3 (b) demonstrates the increased system up-
time after optimization. The results underscore the
importance of choosing the right optimization algo-
rithms, for improving the reliability and efficiency of
renewable energy systems [12]. The system uptime
plot (Fig. 3b) shows similar improvements. The base-
line uptime varied between 859% and 93%, indicating
frequent downtime. GA increased uptime to a stable
97-99% range, while PSO consistently maimntained
uptime near 99%, demonstrating superior reliabili-
ty. These plots clearly illustrate that PSO is the most
effective optimization algorithm, yielding higher and
more stable efficiency and uptime, thereby validating
the use of advanced optimization to create a more
reliable and sustainable energy system.

System uptime, a critical reliability metric, saw
substantial 1mprovements, increasing to 99% with
PSO and 98% with GA. These enhancements under-
score the role of optimization algorithms in reducing
downtime and ensuring a reliable energy supply. The
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Figure 3. Visual efficiency improvements after applying optimization algorithms: a) Energy utilization, and b) System uptime
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associated operational cost reductions of 15% with
PSO and 129 with GA can be attributed to more
efficient energy use and improved system reliability,
which reduces maintenance needs. The time-series
analysis of these KPIs confirmed a consistent in-
crease 1n energy utilization efficiency and a reduction
m downtime incidents after optimization was imple-
mented. The optimized system maintained higher
performance levels throughout the year, showcasing
the algorithms' ability to adapt to varying conditions
[9]. The use of advanced algorithms like GA and
PSO resulted in significant efficiency improvements,
enhanced system reliability, and reduced operational
costs, highlighting their potential in maximizing the
performance of renewable energy systems for wa-
ter-related applications.

To validate the obtained results, we compared
it with a similar study conducted by Giiven and
Yoriikeren [30] on the optimization of stand-alone
renewable energy systems. In this study, GA and
PSO models were used to optimize hybrid energy
systems and similar results were observed in terms of
mmproving energy efficiency and reducing operating
Ccosts.

3.3 Real-time Monitoring and Fault Detection

The combination of IoT devices significantly
enhanced the system's capability for real-time mon-
itoring and dynamic optimization [31]. The deploy-
ment of loT sensors across solar panels, wind tur-
bines, and battery storage units enabled continuous,
high-frequency data collection on key parameters.
This data was transmitted via the MQTT protocol
to a cloud-based platform, where it was processed 1n
real-time to feed the ML models. This allowed for
dynamic adjustments to system operations, such as
pump speed and heating element power, ensuring
optimal performance despite varying environmental
conditions. The IoT utihization also enabled rapid
fault detection and mitigation, as illustrated by two
case studies. In one instance, IoT sensors detected
an abnormal temperature rise in a solar panel, trigger-
g an immediate alert and an automatic adjustment

Table 6. System performance metrics before and after 10T utilization

of the panel's orientation to reduce solar exposure,
preventing damage. In another case, vibration sen-
sors 1dentified a mechanical issue in a wind turbine,
prompting an automatic reduction in the turbine's
speed and a notification to maintenance personnel,
preventing a costly failure. The effectiveness of IoT
utilization 1s quantified in Table 6. Before 10T, av-
erage energy production efficiency was 75%; after
10T benefiting, it increased to 85% due to real-time
optimization. System uptime improved from 90% to
98%, reflecting greater reliability and fewer disrup-
tions. Most dramatically, the average fault detection
time was reduced from 120 minutes to just 15 min-
utes, and the average response time to faults fell from
240 minutes to 30 minutes. This major improvement
happened because of continuous monitoring and au-
tomatic alerts that allowed quick action. The findings
m Table 6 demonstrate the transformative impact of
10T on system performance, leading to more stable,
efficient, and cost-effective operations. These en-
hancements confirm that IoT utilization 1s essential
for optimizing renewable energy systems through in-
telligent monitoring and predictive maintenance [32].

In Fig. 4, the comparison of system performance
before and after IoT utilization is shown. This figure
lustrates the impact of Io'T utilization on system per-
formance over a year, comparing a system without
10T to one with IoT. The IoT-enabled system con-
sistently demonstrates superior performance.

Figure 4(a) represents improved energy efficien-
cy 1n systems equipped with IoT, which consistently
maintains a more stable range compared to the non-
IoT systems. This improvement 1s due to real-time
data collection and smart system management fa-
cilitated by IoT devices. Energy efliciency 1s main-
tained in a higher and more stable range of 85-90%,
compared to the volatile 70-82% range of the non-
10T system. In Figure 4(b), the system uptime also
improves significantly, highlighting the higher stabil-
ity in Io'T-enabled systems. System uptime with IoT
remains consistently above 979%, approaching 99%
reliability, whereas the non-IoT system fluctuates be-
tween 88% and 95%. Additionally, Figure 4(c) and
Figure 4(d) show a remarkable reduction in fault de-

Performance Metric

Before IoT Integration After 10T Integration

Average Energy Production Efficiency (%)
Average System Uptime (%)

Average Fault Detection Time (min)
Average Response Time to Faults (min)

75 85
90 98
120 15
240 30
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Figure 4. Visual system performance before and after 10T utilization: a) Energy production, b) System uptime, c) Fault detection, and
d) Response time to faults
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tection time and response time to faults in IoT-en-
abled systems. These changes show that the IoT
utilization has a significant role in enhancing system
responsiveness and overall performance. Fault detec-
tion time drops from over 120 minutes on average
to just 15-20 minutes with IoT. Similarly, response
time to faults 1s reduced from over 250 minutes to
approximately 30-50 minutes. The results confirm
that IoT utilization dramatically enhances energy efli-
ciency, uptime, and responsiveness, underscoring the
importance of IoT-driven monitoring for achieving
sustainable, high-performance energy systems [32].

3.4 Digital Twin Simulations

The implementation of digital twin technology
provided significant sights mto the performance
and optimization of the renewable energy system for
water-related applications. The digital twin, a virtual
replica of the physical system developed in MAT-
LAB's Simulink environment, allowed for detailed
simulation and analysis of the system's behavior un-
der various conditions. This enabled an in-depth
analysis of performance metrics during scenarios like
weather fluctuations and component failures, helping
to 1dentify bottlenecks that were not apparent through
conventional monitoring. The digital twin helped
plan maintenance in advance and predict problems
before they happened by running simulations of
component aging. Various optimization scenarios,
such as adjusting the tilt angle of solar panels, were
tested virtually to maximize energy production effi-
ciency. Furthermore, simulations of fault conditions
provided sights into system resilience and helped
develop strategies to improve reliability [15].

Based on these simulation mnsights, several system
adjustments were implemented. Optimizing the tilt
angle of the solar panels by 15 degrees, as suggested
by simulations, increased solar energy capture by 5%.
The digital twin also indicated that optimizing battery
charge and discharge cycles could improve storage
efficiency, which resulted in a 10% increase in battery
life. The simulations also provided valuable data on
effective fault mitigation strategies, such as redirecting

power flow during a wind turbine failure to minimize
system impact. The effectiveness of these digital twin-
based adjustments 1s summarized i Table 7.

Before the adjustments, the average energy pro-
duction efficiency was 859%; after optimization, it in-
creased to 929%. This 7% improvement 1s attributed
to the digital twin's ability to simulate and optimize
operational parameters. System uptime improved
from 98% to 99.5%, demonstrating more stable and
continuous operation due to proactive fault predic-
tion. The battery life expectancy increased from 5 to
5.5 years, a 109% extension resulting from more effi-
clent energy management strategies. Finally, the aver-
age fault detection and mitigation time was reduced
from 30 minutes to 20 minutes, a 33% improvement
due to the real-time predictive capabilities of the dig-
ital twin models. These results emphasize the value
of digital twin technology in predictive analytics, re-
al-time monitoring, and proactive maintenance for
optimizing renewable energy systems and ensuring
long-term sustainability [22].

In Fig. 5, the impact of digital twin-based adjust-
ments on system performance 1s analyzed. As it 1s
expected, the results show that implementing digital
twin adjustments led to a 92% energy efficiency and
a 99.5% system uptime. These improvements reflect
the increased accuracy in energy management and
process optimization enabled by the digital twin sim-
ulations. With the help of digital twins, fault detection
and mitigation times were also significantly reduced,
further enhancing system resilience. These results
demonstrate the value of digital twin technology in
optimizing renewable energy systems and water-relat-
ed applications [23].

The results demonstrate that digital twin technol-
ogy significantly enhances system efficiency and re-
liability [33].The energy production efficiency (Fig.
ba), which fluctuated between 78% and 87% before
adjustments, stabilized between 909% and 95% after-
ward, with significantly less variability. This indicates
more precise energy management enabled by the
digital twin's predictive models. System uptime (Fig.
5b), which previously had occasional dips, remained
consistently above 99% after adjustments, showcasing

Table 7. System performance metrics before and after digital twin-based adjustments

Performance Metric Before Adjustments After Adjustments
Average Energy Production Efficiency (%) 85 92
Average System Uptime (%) 98 99.5
Battery Life Expectancy (years) 5 5.5

Fault Detection and Mitigation Time (min) 30 20
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Figure 5. System performance before and after digital twin-based adjustments: a) Energy production, b) System uptime, and
c) System performance metrics

reduced downtime and improved operational stabil-
ity. The summary bar chart (Fig. 5¢) highlights the
key mmprovements: average energy production effi-
clency increased significantly, system uptime reached
nearly 100%, battery life expectancy showed a slight
mcrease, and fault detection and mitigation time de-
creased notably. These results clearly demonstrate
the effectiveness of digital twin technology in fine-tun-
g system operations for maximum output and reli-
ability, reinforcing its value in developing sustainable,
high-performance renewable energy systems.

3.5 CO: Emissions Reduction Analysis

The combination of the proposed Industry 4.0
framework not only mmproved operational perfor-
mance but also delivered significant environmental
benefits. By optimizing production processes and
minimizing inefficiencies, the system demonstrated
a clear potential for reducing its carbon footprint,
highlighting the dual economic and ecological value
of this smart manufacturing approach [34].

The increase in energy production efficiency
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from a baseline of 65% to 92% after digital twin-
based adjustments directly correlates with reduced
fossil fuel dependency. By maximizing renewable
energy utilization, the system reduced the need for
supplementary grid energy, which 1s often derived
from carbon-intensive sources. Using a baseline for
grid energy emissions (0.527 kg COo/kWh), we cal-
culated the reduction in CO; emissions based on the
increased energy efficiency and reduced operational
downtime. Table 8 presents a comparative analysis of
the impact of various optimization methodologies on
energy efficiency and the corresponding reduction in
COq emissions.

The results show a clear trend: as energy efficien-
cy improves, the estimated COg emissions reduction
mcreases, demonstrating the environmental benefits
of advanced energy management. In the absence of
optimization, the system's 659% efficiency results in no
additional COg reduction. Applying GA optimization
increases efficiency to 829, leading to an estimated
annual COs reduction of 12,000 kg. With PSO, effi-
cliency 1improves to 85%, resulting in a 14,500 kg re-
duction per year. IoT-based monitoring, while main-
taining 85% efficiency, increases the COgq reduction
to 15,000 kg per year due to better demand response
and fault detection. The most effective method 1s dig-
ital twin-based adjustments, which achieve 92% efhi-
ciency and an annual COs reduction of 18,000 kg.
This substantial improvement 1s due to the predic-
tive and simulation capabilities of digital twins, which
enable real-time adjustments and optimal energy
distribution. These findings clearly demonstrate that
more advanced optimization methods lead to great-
er emissions reductions, highlighting the importance
of smart energy management strategies in achieving
sustainable and environmentally friendly renewable
energy systems [33].

Furthermore, rapid fault detection and mitigation
through IoT and digital twins further reduced COs
emissions by minimizing energy wastage during sys-
tem malfunctions. For instance, early detection of
equipment issues prevented energy loss and avoided
reliance on carbon-intensive backup systems. This

combination of advanced optimization, real-time
monitoring, and simulation enhanced energy effi-
ciency, and demonstrated significant environmental
benefits

4. Conclusion

The current research investigated the Industry 4.0
framework aimed in developing the management of
renewable energy systems. The framework addresses
the challenges associated with managing decentral-
1zed energy systems by combining ML, IoT, and dig-
ital twin technologies. The study demonstrates how
these technologies can optimize production efficien-
¢y, system reliability, and environmental sustainabili-
ty through predictive analytics, real-ime monitoring,
and dynamic optimization. Key findings are:

e ML models (specifically the neural network
model) showed the highest accuracy, achieving
an R? of 0.92, which significantly improved en-
ergy generation forecasts.

e Optimization algorithms (GA and PSO) en-
hanced energy utilization efficiency from 65%
to 85%, with PSO outperforming GA in all
metrics, especially in system uptime (999% vs.
989%) and cost reduction (15% vs. 129).

e JoT utihzation led to real-ime monitoring, re-
ducing fault detection time from 120 minutes to
Just 15 minutes, and system uptime improved
from 909% to 98%.

* Digital twin simulations provided valuable in-
sights into system performance and helped
achieve a 7% improvement in energy efficiency
and a 99.5% system uptime.

* The hybrid approach resulted in a 209 reduc-
tion in CO:2 emissions, highlighting both eco-
nomic and environmental benefits.

Despite the advancements made, some limitations
still exist in this study. The system’s performance has
only been evaluated under a limited range of oper-
ating conditions, and its adaptability to extreme or

Table 8. CO, emissions reduction achieved through different optimization

Methodology Energy Efficiency (%) Estimated CO, Emissions Reduction (kg/year)
Without Optimization 65 -

GA Optimization 82 12,000

PSO Optimization 85 14,500

loT-Based Monitoring 85 15,000

Digital Twin Adjustments 92 18,000
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unexpected environmental changes has not been ful-
ly explored. While this study utilizes supervised ML
models, the application of unsupervised learning or
more sophisticated techniques like reinforcement
learning can provide even greater benefits in dynam-
ic optimization. To address these limitations, future
studies can explore the use of reinforcement learning
algorithms for more dynamic and real-time optimiza-
tion of renewable energy systems. Expanding the sys-
tem’s testing to a broader range of environmental con-
ditions and operational scales would be beneficial to
better understand the robustness and scalability of the
proposed framework. Exploring collaborative frame-
works between engineering teams and management
would be key to ensuring the successful implementa-
tion and long-term sustainability of such systems.

Disclosure

During the preparation of this work, the authors
used ChatGPT to improve readability and language.
After using this tool, the authors reviewed and edited
the content as needed and take full responsibility for
the content of the publication.

Funding

This research did not receive any specific grant
from funding agencies i the public, commercial, or
not-for-profit sectors.

References

[1] S. Algarni, V. Tirth, T. Algahtani, S. Alshehery, and P.
Kshirsagar, "Contribution of renewable energy sources
to the environmental impacts and economic benefits for
sustainable development," Sustain. Energy Technol. Assess.,
vol. 56, p. 103098, 2023, doi: 10.1016/j.seta.2023.103098.

[2] B. Bagga, "Adaptation and mitigation strategies for tackling
climate change,” in Sustainability in the Oil and Gas Sector,
T. Walker, S. Barabanov, M. Michaeli, and V. Kelly, Eds.
Cham, Switzerland: Springer Nature Switzerland, 2024, pp.
65-94.

[3] L. Ren and N. Xu, "T'win long short-term memory for
environmental  hierarchical ~planning of  low-carbon
landscape architecture,” Int. J. Low-Carbon Technol., vol.
19, pp. 2363-2374, 2024, doi: 10.1093/ijlct/ctac183.

[4] G. Moiceanu and M. N. Dinca, "Climate change-
greenhouse gas emissions analysis and forecast in Romania,"
Sustainability, vol. 13, no. 21, p. 12186, 2021, doi: 10.3390/
sul32112186.

[5] 1. Abid, M. Benlemlih, I. EI Ouadghiri, J. Peillex, and
C. Urom, 'Fossil fuel divestment and energy prices:
Implications for economic agents," J. Econ. Behav. Organ.,
vol. 214, pp. 1-16, 2023, doi: 10.1016/).jebo.2023.07.033.

6] S. M. Alawad, R. B. Mansour, F. A. Al-Sulaiman, and S.
Rehman, "Renewable energy systems for water desalination

applications: A comprehensive review," Energy Convers.
Manag., vol. 286, p. 117035, 2023, doi: 10.1016/).
enconman.2023.117085.

[71 M. Al-Addous et al., "Innovations in solar-powered
desalination: A comprehensive review of sustainable
solutions for water scarcity in the Middle East and North
Africa (MENA) region," Water, vol. 16, no. 13, p. 1877,
2024, doi: 10.3390/w16131877.

18] A. K. Barik, S. Jaiswal, and D. C. Das, "Recent trends
and development in hybrid microgrid: A review on
energy resource planning and control," Int. J. Sustain.
Energy, vol. 41, no. 4, pp. 308-322, 2022, doi:
10.1080/14786451.2021.1910698.

[9] S. M. Inayat, S. M. R. Zaidi, H. Ahmed, D. Ahmed, M. K.
Azam, and Z. A. Arfeen, "Risk assessment and mitigation
strategy of large-scale solar photovoltaic systems in Pakistan,"
Int. J. Ind. Eng. Manag., vol. 14, no. 2, pp. 105-121, 2023,
doi: 10.24867/1JIEM-2023-2-327.

[10] A. Zakariazadeh, R. Ahshan, R. Al Abri, and M. Al-Abri,
"Renewable energy integration in sustainable water systems:
A review," Clean. Eng. Technol., vol. 18, p. 100722, 2024,
doi: 10.1016/j.clet.2024.100722.

[11] P. Liu, T. Zhang, F. Tian, Y. Teng, and C. Gu, "A wind
power forecasting model mcorporating recursive Bayesian
filtering state estimation and time-series data mining," Teh.
Vjesn., vol. 31, no. 5, pp. 1485-1493, 2024, doi: 10.17559/
TV-20231019001038.

[12] N. Mlilo, J. Brown, and T'. Ahfock, "Impact of intermittent
renewable energy generation penetration on the power
system networks - A review," Technol. Econ. Smart Grids
Sustain. Energy, vol. 6, p. 25, 2021, doi: 10.1007/s40866-
021-00123-w.

[13] Q. Hassan et al., "The renewable energy role in the global
energy transformations,” Renew. Energy Focus, vol. 48, p.
100545, 2024, doi: 10.1016/j.ref.2024.100545.

[14] X. Y1, T. Lu, Y. Li, Q. Ai, and R. Hao, "Collaborative
planning of multi-energy systems integrating complete
hydrogen energy chain,” Renew. Sustain. Energy Rev., vol.
210, p. 115147, 2025, doi: 10.1016/j.rser.2024.115147.

[15] K. Ma, Y. Yu, B. Yang, and J. Yang, "Demand-side energy
management considering price oscillations for residential
building heating and ventlation systems," IEEE Trans. Ind.
Inform., vol. 15, no. 8, pp. 4742-4752, 2019, doi: 10.1109/
TIL1.2019.2901306.

[16] C. J. Ejyi et al., "Comprehensive review of artificial
mtelligence applications in renewable energy systems:
Current implementations and emerging trends," J. Big Data,
vol. 12, p. 169, 2025, doi: 10.1186/s40537-025-01178-7.

[17] O. Mamyrbayev, A. Akhmediyarova, D. Oralbekova, J.
Alimkulova, and Z. Alibiyeva, "Optimizing renewable energy
mtegration using [oT and machine learning algorithms," Int.
J. Ind. Eng. Manag., vol. 16, no. 1, pp. 101-112, 2025, doi:
10.24867/1JIEM-375.

[18] B. Madaminov, S. Saidmurodov, L. Saitov, D.
Jumanazarov, A. M. Alsayah, and L. Zhetkenbay, "Multi-
objective optimization framework for energy efficiency
and production scheduling i smart manufacturing
using reinforcement learning and digital twin technology
itegration," Int. J. Ind. Eng. Manag., vol. 16, no. 3, pp.
283-295, 2025, doi: 10.24867/1J11EM-389.

[19] A. H. Alhamami, E. Falude, A. O. Ibrahim, Y. A. Dodo,
O. L. Daniel, and F. Atamurotov, "Solar desalination system
for fresh water production performance estimation in net-
zero energy consumption building: A comparative study
on various machine learning models," Water Sci. Technol.,
vol. 89, no. 8, pp. 2149-2163, 2024.

[20] 1. Spasojevic, S. Havzi, D. Stefanovic, S. Ristic, and
U. Marjanovic, "Research trends and topics in IJIEM

International Journal of Industrial Engineering and Management



16

Mukhitdinov et al.

(21]

(22]

(23]

(24]

1251

[26]

(27]

(28]

(291

(301

(31]

[32]

(33]

(34]

from 2010 to 2020: A statistical history," Int. J. Ind. Eng.
Manag., vol. 12, no. 4, pp. 228-242, 2021, doi: 10.24867/
JIEM-2021-4-290.

D. Borsatti, W. Cerroni, F. Tonini, and C. Raffaelli, "From
IoT to cloud: Applications and performance of the MQTT
protocol,” in Proc. 22nd Int. Conf. Transparent Opt.
Netw. (ICTON), Bari, Italy, 2020, pp. 1-4, doi: 10.1109/
ICTONS51198.2020.9203167.

P. Podrzaj and D. Klob¢ar, "Review of advanced resistance
welding technologies and control methods for joiming
state-of-the-art materials i lightweight and electric vehicle
manufacturing," Adv. Technol. Mater., vol. 50, no. 1, pp.
23-32, 2025, doi: 10.24867/ATM-2025-1-004.

V. G. Gaitan and I. Zagan, "Experimental implementation
and performance evaluation of an IoT access gateway for
the Modbus extension," Sensors, vol. 21, no. 1, p. 246,
2021, doi: 10.3390/s21010246.

L. Yanfei, W. Cheng, Y. Chengbo, and Q. Xiaojun,
"Research on ZigBee wireless sensors network based on
ModBus protocol,” in Proc. Int. Forum Inf. Technol.
Appl. (IFITA), Chengdu, China, 2009, pp. 487-490, doi:
10.1109/IFITA.2009.30.

A. Molajou, V. Nourani, A. D. Tajbakhsh, et al., "Mult-
step-ahead rainfall-runoff modeling: Decision tree-based
clustering for hybrid wavelet neural-networks modeling,"
Water Resour. Manag., vol. 38, no. 13, pp. 5195-5214,
2024, doi: 10.1007/s11269-024-03908-7.

K. Ukoba, K. O. Olatunji, E. Adeoye, T.-C. Jen, and
D. M. Madyira, "Optimizing renewable energy systems
through artificial mtelligence: Review and future prospects,”
Energy Environ., vol. 35, no. 7, pp. 3833-3879, 2024, doi:
10.1177/0958305X241256293.

K. T. Alao, S. I. Gilani, K. Sopian, et al., "A review on digital
twin application in photovoltaic energy systems: Challenges
and opportunities,” JMST Adv., vol. 6, pp. 257-282, 2024,
doi: 10.1007/s42791-024-00083-z.

M. Belik and O. Rubanenko, "Implementation of digital
twin for icreasing efficiency of renewable energy sources,”"
Energies, vol. 16, no. 12, p. 4787, 2023, doi: 10.3390/
enl6124787.

7. Zhou, C. Qiu, and Y. Zhang, "A comparative analysis
of linear regression, neural networks and random forest
regression for predicting air ozone employing soft sensor
models," Sci. Rep., vol. 13, p. 22420, 2023, doi: 10.1038/
$41598-023-49899-0.

A. F. Guven and N. Yortikeren, "A comparative study on
hybrid GA-PSO performance for stand-alone hybrid energy
systems optimization,” SIGMA, vol. 42, no. 5, pp. 1410-
1438, 2024.

R. Ajayi, "Integrating IoT and cloud computing for
continuous process optimization in real-time systems," Int.
J. Res. Publ. Rev., vol. 6, no. 1, pp. 2540-2558, 2025, doi:
10.55248/gengpi.6.0125.0441.

V. Anand and H. Sharma, "Internet of Things (IoT") enhanced
fault detection and renewable integration for sustainable
urban power systems," in Innovations in Non-Conventional
Energy Sources, 1st ed., K. Arora and H. Sharma, Eds. Boca
Raton, FL: CRC Press, 2025, pp. 166-188.

A. G. Abo-Khalil, "Digital twin real-time hybrid simulation
platform for power system stability," Case Stud. Therm. Eng.,
vol. 49, p. 103237, 2023, doi: 10.101/6j.csite.2023.103237.
K. A. Kuterbekov, K. Zh. Bekmyrza, A. M. Kabyshev,
M. M. Kubenova, A. Baratova, I. Abdullayeva, and A. T.
Avalew, "Enhancement in fuel cells: PGM-free catalysts,
nanostructured — supports, and advanced membrane
technology toward low-carbon emission," Int. J. Low-
Carbon Technol., vol. 20, pp. 368-383, 2025, doi: 10.1093/
jjlet/ctat008.

International Journal of Industrial Engineering and Management



