
Case Studies of Survival Analysis for Predictive 
Maintenance in Manufacturing   

1. Introduction

Maintenance plays a vital role in the manufactur-
ing process and can be defined as the set of activities 
that preserve the system in the functional state [1]. 
The maintenance can be classified in different ways 
depending on how it is performed on the manufac-
turing system [2]. Only a small number of mainte-
nance types can be performed without interrupting 
the manufacturing process [3]. However, in most 
cases the maintenance must be performed only if the 
production process is shut down. When the main-
tenance requires production stopping it may lead to 
tension between the production and the maintenance 

departments in a way that the production needs qual-
ity and reliable maintenance without production in-
terruption or at least with minimum stopping time 
[4]. Integrated production maintenance and quality 
management ensures maximum production efficien-
cy and profitability [5]. The worst-case scenario may 
happen when the production stops due to the com-
ponent failure [6]. Such a case should never happen 
in production with well-planned and organized main-
tenance. Being able to create a perfect maintenance 
plan can cost more than planned by budget [2]. It 
is obvious that good maintenance planning can of-
fer nearly perfect production with minimal produc-
tion interruption. The maintenance plan depends 
on adopted strategies and methods for maintenance 

The Predictive Maintenance (PdM) as a tool for detecting future failures in manufacturing 
was recognized as an innovative and effective method. Different approaches for PdM have 
been developed to compromise the availability of data and the demanding needs for prob-
ability estimation. The Survival Analysis (SA) method was used in this paper for the prob-
ability estimation of machine failure. The paper presents the use of the two most popular SA 
models: Kaplan-Meier non-parametric and Cox proportional hazard models on two different 
datasets to present the methodology and the possibilities for applications in manufacturing. 
By using the first SA model, the results show the probability of a machine or component part 
to survive a certain amount of time. The Cox proportional model was used to find out the 
most significant covariates in the observed dataset which have an influence on survival time. 
The analysis showed that the use of SA in the PdM is a challenging task and can be used as 
an additional tool for failure analysis and maintenance planning.
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time calculation and prediction. Instead of relying on 
planned maintenance entirely the ability to predict 
possible failures in the manufacturing process has 
become largely popular in the last decades. Knowing 
the possible failure of the specific component before 
it occurs leads to multiple benefits in the production 
such as reduced maintenance costs improved pro-
duction quality and increased the productivity [1]. 

Recent advancements in Artificial Intelligence 
(AI) and Machine Learning (ML) improved the 
maintenance process primarily in the ability to de-
tect and predict errors before failure occurs [7]. This 
kind of maintenance is called Predictive Mainte-
nance (PdM) and it requires the equipment to pro-
vide data from sensors monitoring the equipment as 
well as other operational data [2]. In other words, it 
is a technique used to determine (predict) the failure 
of the machine component in the near future so that 
the component can be replaced based on the main-
tenance plan before it fails and stops the production 
process. Different types of maintenance with the abil-
ity to improve the production process are presented 
in Figure 1.

The PdM uses data collected from various sensors 
installed on the machines. The sensors are built into 
the Internet of Things (IoT) devices that send data 
in the cloud. Once the data are in the Cloud differ-
ent cloud solutions can use the data for processing 
and analysis. PdM can be implemented in the cloud 
solution as a part of Industry 4.0. Many different 
Cloud based PdM solutions have been implemented 
and published through the literature [11]-[14]. Anna-
malai, Udendhran, and Vimal [11] presented a de-
tailed examination of cloud-based PdM and machine 

monitoring solutions specifically tailored for the au-
to-mobile industry. The relevance of this work is its 
specific focus on an industrial application, showcasing 
the practical benefits and challenges of implementing 
PdM solutions in a cloud environment. It provides a 
concrete example of how cloud technologies can be 
utilized to enhance maintenance operations and im-
prove the reliability of manufacturing processes. Hrn-
jica and Mehr [12] discussed the application of deep 
learning techniques for energy demand forecasting, 
which is closely related to PdM. Their work highlights 
the importance of Explainable Artificial Intelligence 
(XAI) and Cloud Computing in making predictive 
models more transparent and accessible. The rel-
evance here is the emphasis on the cloud's role in 
managing and processing large datasets necessary for 
accurate and reliable PdM models. Paolanti et al. [13] 
focused on the application of machine learning ap-
proaches for PdM within the context of Industry 4.0. 
The relevance of this work lies in its demonstration 
of how cloud-based systems can leverage machine 
learning algorithms to analyze vast amounts of sen-
sor data for predicting machine failures. The integra-
tion of these systems into the cloud allows for scal-
able and flexible maintenance solutions, essential for 
modern manufacturing environments. Previous study 
explored the integration of PdM systems with Cloud 
Computing, emphasizing how cloud-enhanced sys-
tems can improve maintenance scheduling and fault 
detection [14]. The findings are particularly relevant 
because it outlines the practical implementation of 
cloud-based PdM systems, demonstrating the benefits 
of real-time data processing and analytics provided by 
cloud infrastructure.

Figure 1. Different types of maintenance [2]
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In the realm of PdM, leveraging advanced sta-
tistical and machine learning techniques has been a 
focal point of research, as evidenced by numerous 
studies emphasizing data-driven approaches for fault 
detection and maintenance optimization. Amidst this 
landscape, Survival Analysis (SA) presents a compel-
ling methodology for several reasons. SA is a robust 
statistical method traditionally used in medicine to 
estimate the time of an event, such as the occurrence 
of a disease. SA is highly compelling for PdM due 
to its proven robustness in handling time-to-event 
data and censored observations, as evidenced in 
biomedical applications. Unlike traditional regres-
sion models, SA explicitly models the time until a 
machine component fails, enhancing maintenance 
scheduling and resource optimization. The Kaplan-
Meier estimator and Cox proportional-hazards mod-
el adeptly manage censored data, which is common 
in industrial settings where preemptive maintenance 
occurs. Moreover, the Cox model identifies signifi-
cant covariates affecting failure rates, providing valu-
able insights for targeted interventions. Integrating 
SA with Cloud Computing and AI, as highlighted 
in studies by Schmidt and Wang [14] and Hrnjica 
and Mehr [12], further refines predictive capabili-
ties, making SA a versatile and powerful tool across 
various industries, from manufacturing to automo-
tive. This integration aligns with the growing trend 
of data-driven and AI-enhanced industrial practices, 
demonstrating SA's potential to significantly advance 
PdM strategies. This paper explores the application 
of SA in the manufacturing sector for PdM, focusing 
on two of its most popular models: the Kaplan-Meier 
estimator and the Cox proportional-hazards model. 
These models are applied to two datasets: the NASA 
Turbofan Engine Degradation Simulation Data Set 
(NTED) and the Predictive Mainte-nance Modelling 
Guide Data Set (PRMM).

This manuscript presents the following contribu-
tions to the field of PdM in manufacturing by (1) dem-
onstrating the application of Kaplan-Meier and Cox 
proportional-hazards models to PdM showcasing 
their potential in estimating the survival probabilities 
and identifying significant factors influencing machin-
ery failures, (2) providing a detailed methodology for 
transforming raw datasets into formats suitable for SA 
– this involves preprocessing steps to identify failure 
times and censoring events crucial for accurate sur-
vival modeling, (3) applying the SA methods to two 
distinct datasets the NTED and PRMM highlighting 
the differences in data collection approaches and 
their implications for PdM – this comparative analy-
sis offers insights into how different data structures 

and information availability impact the effectiveness 
of SA models, (4) utilizing the Cox proportional-
hazards model to identify significant sensor readings 
and other covariates that influence the survival times 
of machinery components – this information is valu-
able for maintenance planning and decision-making 
enabling targeted interventions to extend the lifespan 
of critical components, (5) discussing the practical 
implications and challenges of implementing SA 
models in a real-world manufacturing setting, and 
(6) highlighting the potential impact of Kaplan-Meier 
and Cox models on maintenance planning including 
optimizing the timing of maintenance activities and 
reducing the risk of unexpected failures. 

The structure of the following sections is organized 
as follows. Initially, we provide a review of the existing 
literature on PdM, SA, and associated technologies. 
Subsequently, we detail the methodology applied in 
the case study. The manuscript concludes with two 
sections: a comprehensive description of the case 
studies, and the discussions and the conclusions that 
can be drawn, including the limitations and outlook.

2. Literature Review

2.1 Importance of Maintenance

According to recent investigations and depending 
on the industry, maintenance in general represents 
between 15% and 70% of overall costs in industry 
[15]. As stated by Mobley [16], the surveys con-
ducted on maintenance show that about one third 
of spending on maintenance in the US is wasted be-
cause of unnecessary activities. Overall, the literature 
distinguishes two main categories of maintenance 
policies: corrective and preventive maintenance. 
Corrective maintenance (also referred to as reactive 
maintenance) follows the run-to-failure philosophy, 
which often leads to costly repairs and manufacturing 
reduction. The preventive maintenance policies are 
also called proactive maintenance, i.e. an attempt to 
prevent fatal failure occurrence [16].

2.2 Predictive Maintenance and Prognostic 
Technologies

PdM as such can be seen as a preventive main-
tenance policy which allows estimation and predic-
tion of the remaining useful life of the machinery in 
production. The idea of PdM goes back to the early 
1990's and expands regularly scheduled preventive 
maintenance. PdM as an approach is based on con-
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tinuous monitoring of sensors of relevant machine 
parameters such as vibration and temperature. How-
ever, monitoring alone is not sufficient. Which main-
tenance tasks should be performed first and where 
to focus improvement efforts plays a very important 
role. Integration into a computerized system allows 
real-time task prioritization and performance moni-
toring, enhancing productivity and maintenance ef-
ficiency.

Prognostic techniques are a very important part 
of PdM. According to results of the recent survey on 
PdM in Industry 4.0, which analyzed over 150 papers 
on this topic, the number and diversity of prognos-
tic technologies are enormous [17]. Clear classifica-
tion of the different techniques is not easy to make. 
One common thing for all techniques is that they 
rely on monitored data. According to Krupitzer et al. 
[17], most of the approaches (around 74%) are data 
driven. Other approaches distinguished during the 
survey have been model-based approach and non-
prognostic approach. Most applied techniques are 
regression based (multiple) linear regression, logistic 
regression, regression trees, random forest, and oth-
ers). Likewise, widely used are the Bayesian probabil-
ities. A special subcategory of data-driven approaches 
is artificial intelligence, which makes up 25% of in-
vestigated examples [17]. In this relation, the most 
frequent term occurs to be neural networks. In addi-
tion, around 37% of research papers used real data to 
evaluate the results and simulation-based evaluation.

In general, PdM extracts insights from the data 
and acts on them. The PdM can improve the produc-
tion process and increase productivity. By success-
fully handling PdM, we can achieve the following:

•	 Reduce the operational risk of mission-critical 
equipment

•	 Control cost of maintenance by enabling just-
in-time maintenance operations

•	 Discover patterns connected to various mainte-
nance problems

•	 Provide Key Performance Indicators

Depending on the application scenario and va-
riety of data as well as chosen techniques, different 
amounts of data have been applied to achieve the de-
sired results. By using continuous production moni-
toring, the IoT, Big Data, and Cloud-based services 
can bring the latest states of production in the form of 
data sets. Once the data sets contain the latest infor-
mation about the production, the developed models 
can extract information which is relevant to the cur-
rent production state.

2.3 Predictive Maintenance and Industry 4.0

Without a doubt, the PdM plays a major role in 
Industry 4.0. The Industry 4.0 key components Big 
Data, AI, ML, Cloud Computing, and IoT offer pos-
sibilities to integrate PdM and connect it to other sys-
tems of the production process. Those technologies 
along with the produced data are also increasingly 
used by PdM to predict machine failure and related 
maintenance parameters. By using IoT and Cloud 
Computing, PdM reaches its full potential. Combi-
nation of Big Data ecosystem orchestrated through 
the IoT for various PdM approaches in industrial 
IoT-based smart manufacturing can be found in lit-
erature. In most cases, the IoT provides real-time 
data while the big data ecosystem provides predictive 
analytics algorithms in order to dynamically manage 
preventive maintenance and failures. Beside predic-
tive algorithms, the ecosystem contains numerous 
technologies including big data ingestion, integration, 
transformation, storage, analytics, and visualization in 
a real-time environment using various technologies 
such as the Data Lake, NoSQL database, Apache 
Spark, Apache Drill, Apache Hive, OPC Collector, 
and other techniques [11], [18]-[20].

The data collection with noise (e.g. temperature 
and vibrations sensors) are nowadays easily applica-
ble and cheap. In the case of PdM, Kommenda and 
Strumpf [21] provided a successful example of vari-
ous regression-based predictions (e.g. Coke Qual-
ity Prediction, Design of friction systems as well as 
PdM). The IoT devices generate lots of data which 
are in the most cases identical, or the values are in 
the expected value range. This is because most of 
the time the production machines work in the same 
healthy conditions. From the dataset (software) point 
of view, such conditions generate identical copies of 
the production systems. However, in hardware sense 
(production machines) identical does not mean com-
pletely the same. This means that even if the systems 
are identical, it does not mean that they will behave 
in the same manner. It is more likely that depend-
ing on operating conditions and different humans as 
operators, most of them will, even by same param-
eters, behave differently. From the experience of real 
production systems, one can find out that the quality 
of manufactured parts and machine life also strongly 
depends on operators [22].
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2.4 Using Survival Analysis for Predictive 
Maintenance

PdM based on SA can be implemented on differ-
ent levels. In most cases, PdM based SA is used for 
the calculation of various survival curves and then in-
corporated into ML models. Survival curves are used 
to calculate the probability of defects derived from 
the Cox proportional-hazards model. Although in 
most cases SA is used in medical research of various 
diseases such as Alzheimer's, cancer, leukemia, and 
others, it is possible to find examples of successful 
application in production and related areas. There 
are few examples where PdM based SA is used in 
Cloud based Solutions using AI, ML, Big Data, IoT, 
and other Industry 4.0 based technologies. This pa-
per presents an approach of using PdM based SA in 
the cloud-based solution [23]-[25].

There are few examples where PdM based SA 
is used in Cloud based Solutions using AI, ML, Big 
Data, IoT and other Industry 4.0 based technologies 
[20], [24], [26], [27]. This paper presents an approach 
of using PdM based SA in the cloud-based solution.

2.5 Survival Analysis as Method

SA is a popular data analysis method that first 
appeared in bio science and medicine science, and 
later expanded to other scientific fields. SA tries to 
estimate the time to event data. The time to event T 
can be anything related to maintenance such as: dura-
tion of proper operation of the machine, frequency 
of the machine failure, duration of the last mainte-
nance etc. It is always a positive value. In the context 
of science, survival means probability [28]. There are 
four mayor probability functions frequently used in 
the SA. In SA, the survival function S is defined as 
function of time S(t). Generally, the survival function 
S(t) is defined as the probability for survival after time 
t of the random variable:

(1)

Obviously, S(0)=1, which indicates that the sur-
vival function is related to the lifetime distribution 
function. In SA, the cumulative distribution function 
F represents the probability that the event variable 
occurs earlier than t. 

(2)

The first derivative of cumulative density function 
defines the death density function (DDF) which is 

expressed as: 

(3)

Hazard density function h(t) represents the prob-
ability for the event to occur in the next instant, given 
survival time t:

                       (4)

3. Methodology

This section provides a detailed explanation of 
the methodology adopted for applying SA to PdM 
in manufacturing. The research involved several key 
steps including data preprocessing, model applica-
tion, and result interpretation as well as the concep-
tual design of the case studies conducted.

3.1 Conceptual Design of Case Studies

The research conducted in this manuscript re-
volves around two identical primary case studies 
using distinct datasets: the NASA Turbofan Engine 
Degradation Simulation Data Set (NTED) and the 
Predictive Maintenance Modelling Guide Data Set 
(PRMM). Detailed Datasets description is included 
in the case studies section. The conceptual design of 
these case studies includes the following phases:

(1)	 Selection of Datasets – Two datasets were se-
lected based on their relevance and availabil-
ity for PdM. NTED provides detailed sensor 
readings from aircraft engines while PRMM 
offers comprehensive telemetry and mainte-
nance records for CNC machines.

(2)	 Data Preprocessing – Raw data from both 
datasets were transformed to fit the require-
ments of SA models. This included handling 
missing values, normalizing sensor readings, 
encoding failure events and censoring infor-
mation.

(3)	 Model Implementation – The Kaplan-Meier 
and Cox proportional-hazards models were 
applied to the preprocessed data to estimate 
survival probabilities and identify significant 
predictors of machinery failure.

(4)	 Evaluation and Analysis – The models were 
evaluated using statistical tests and perfor-
mance metrics. The results were analyzed to 
draw meaningful conclusions about the ap-
plicability and effectiveness of SA in PdM.
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3.2 Data Preprocessing

Preprocessing is a critical step to ensure the data-
sets are suitable for SA. For each dataset the follow-
ing preprocessing steps were performed: (1) NTED 
Dataset and (2) PRMM Dataset.

3.2.1 In NTED Dataset

Event Definition: The time to event (failure) 
was recorded as the number of cycles until failure 
for each engine. Censoring was identified based on 
whether an engine survived beyond the observation 
period.

Data Transformation: The dataset was restruc-
tured to include columns for engine ID, cycles, 
failure event (1 for failure, 0 for censored), and sen-
sor readings. Constant and empty columns were re-
moved, and the analysis was constrained to the first 
220 cycles.

3.2.2 In PRMM Dataset

Merging Datasets: Telemetry, maintenance, and 
failure records were merged using machine ID and 
date as key columns. This integration ensured that 
each record included comprehensive information 
about machine conditions and events.

Feature Engineering: Rolling means and stan-
dard deviations for sensor readings (voltage, vibra-
tion, pressure, and rotation) were calculated over 
various time intervals (3, 6, 12, 18, and 24 hours). 
These derived features were used as covariates in the 
SA models.

Event Definition: Failure events were identified 
based on maintenance records with censoring infor-
mation derived from scheduled maintenance activi-
ties.

3.3 Model Implementation

The model implementation consists basically of 
applications of Models: Kaplan-Meier Estimator and 
Cox Proportional-Hazards Model on NTED and 
PRMM Datasets. In NTED Dataset, the survival 
probabilities for each engine were calculated show-
ing the likelihood of engines remaining operational 
over the observed cycles. Confidence intervals were 
computed to assess the uncertainty of the survival 
estimates. As for the PRMM Dataset, Kaplan-Meier 
curves were plotted for different machine compo-
nents allowing for comparison of their survival times. 
The model provided insights into the reliability of 

each component, informing maintenance schedules 
and spare parts management.

3.4 Evaluation and Analysis

The performance and reliability of the models 
were evaluated using various metrics: (1) Kaplan-
Meier Estimator – Survival curves and confidence 
intervals were analyzed to understand the reliability 
and failure patterns of machinery. The area under 
the survival curve was assessed to compare the over-
all survival probabilities of different components. (2) 
Cox Proportional-Hazards Model – The significance 
of covariates was determined through p-values from 
statistical tests. The concordance index was calculat-
ed to measure the predictive accuracy of the model, 
with values closer to 1 indicating better performance.

3.5 Practical Implementation

The practical implementation of these models 
involved using relevant libraries for data processing, 
SA, and visualization.

4. Case Study

This section presents the application of SA in 
PdM of the manufacturing processes by using two 
common types of datasets, as referred to in above 
section 3.2. Usually, datasets for the SA analysis con-
sist of the time to event and event status as well as the 
censoring status. The event status is usually a Bool-
ean variable (true/false) or (1/0) indicating the occur-
rence of the event. By value 1 or “true” the event has 
occurred, but it is not censored whereas 0 or “false” 
indicates non-occurrence of the event which is also 
censored. To analyze any process by SA the two col-
umns must be presented in the datasets. However, 
such information is naturally presented when deal-
ing with drug analysis, patient treatment, or related 
subjects where the SA is used most. However, in the 
manufacturing processes, this is not the case because 
the recorded information is usually the consequence 
of the event e.g., information about the number of 
cycles before fail [29] or replacements of the com-
ponent due to planned maintenance or failure [30]. 

To use SA in PdM the first step is to transform 
the data into SA compatible dataset which clearly 
presents the censored and non-censored events as 
well its duration. Besides the mentioned variables, 
the datasets should contain other related columns 
which can be used to build survival regression. By 
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building survival regression models, SA can answer 
the question of what caused in a certain amount of 
the probability the duration of the event.

4.1 Data Set Description

The first dataset used in the paper is NASA 
Turbofan Engine Degradation Simulation Data Set 
(NTED) which is publicly available at NASA reposi-
tory. The dataset contains several aircraft engines 
monitored throughout usage history. Each engine was 
employed under different flight conditions while the 
21 sensors recorded various states of the engine. De-
pending on the recorded sensor values the amount 
and rate of damage accumulation can be obtained for 
each engine. Data generation and specific meaning of 
the sensors are described in the literature [29].

4.1.1 NTED Dataset 

The dataset is grouped by operating conditions 
and fault modes which are stored in several text-
based files. The paper presents the application of SA 
by using the first group of data set FD001 consisting 
of 100 different engines, one operating condition, 
and one fault mode. The first group of FD001 da-
taset consists of three files which are related to the 
training and testing sets. The complete list of all files 
for NTED dataset and other Meta information are 
shown in Table 1 [31].

The data set describes the usage history of the 100 
engines in the form of run-to-failure event records. 
This means each record contains the time (cycles) 
until the engine failed. In addition to the engine iden-
tification number and cycle number, the dataset con-
tains 21 sensor readings presented in Table 2 [31].

4.1.2 PRMM Dataset 

The second dataset is Predictive Maintenance 
Modelling Guide Data Set (PRMM) which is also 

publicly available at Microsoft® Azure Gallery. Da-
taset contains information of telemetry, maintenance, 
failures, and machine properties about 100 CNC ma-
chines during the production process from January to 
December of 2015 [29]. Unlike previous, this dataset 
contains information about 4 components in each 
CNC machine which are subject of failure and re-
placement. The information about maintenance, fail-
ure and telemetry are stored in different csv files with 
proper machine ID and date. This means that every 
record contains the machine ID and date, which can 
be key columns for merging and joining data. The 
telemetry data contains sensor readings from 100 
CNC machines about voltage, vibration, pressure 
and rotation. The replacement of the components 
in each machine was recorded in the maintenance 
table. The replacement is performed due to sched-
uled maintenance or due to failure. The failure in-
formation of each machine is recorded in the failure 
table. Each machine failure record has date, machine 
ID and failed component. Machine dataset contains 
information about model and age of 100 CNC ma-
chines. The error table contains the logged errors of 
each machine. The error recorded in the machine is 
usually a response of the machine because of some 
uncommon state, and in most cases is not caused by 
a machine failure. The details about PRMM datasets 
are presented in Figure 2.

The datasets represent a different approach to 
collecting data about machine history. None of the 
datasets are ready to be included in the SA process 
and they should be carefully analyzed before the SA 
starts. In the first case, the dataset does not contain 
censored information. In the second case, the dataset 
does not contain the duration of the event. To suc-
cessfully apply the SA on the presented datasets, the 
data preparation step should be performed to iden-
tify the event duration of both censored and non-cen-
sored events as well as set of covariates for building 
survival regressions models.

Dataset parameter FD001 FD002 FD003 FD004

# of engines 100 260 100 249

training size 20631 53579 24270 61249

test size 100 259 100 248

# of columns 26 26 26 26

avg. lifespan 206 206 206 206

# operations cond. 1 6 1 6

# faults cond. 1 1 2 2

Table 1. NTED dataset description 
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4.2 Data Preparation for SA 

To perform SA on the presented datasets, the 
time to event and the indicator for censoring occur-
rence variables have to be defined. From the NTED 

data set description file, the train dataset collects in-
formation which monitored each engine till the fail-
ure time. This means that for each engine the train-
ing dataset contains failure information, presenting 
the maximum cycle. In order to prepare the dataset 

Sensor ID Symbol Description Unit

1 T2 Total temperature at fan inlet °R

2 T24 Total temperature at LPC outlet °R

3 T30 Total temperature at HPC outlet °R

4 T50 Total temperature at LPT outlet °R

5 P2 Pressure at fan inlet Psia

6 P15 Total pressure in bypass-duct Psia

7 P30 Total pressure at HPC outlet Psia

8 Nf Physical fan speed Rpm

9 Nc Physical core speed Rpm

10 Epr Engine pressure ratio -

11 Ps30 Static pressure at HPC outlet Psia

12 Phi Ratio of fuel flow to Ps30 Pps/psi

13 NRf Corrected fan speed Rpm

14 NRc Corrected core speed Rpm

15 BPR Bypass ratio -

16 farB Burner fuel-air ratio -

17 htBleed Bypass enthalpy -

18 Nf_dmd Demanded fan speed Rpm

19 PCNfR Demanded corrected fan speed Rpm

20 W31 HPT coolant bleed lbm/s

21 W32 LPT coolant bleed lbm/s

Table 2. Description of columns for the NTED dataset 

Figure 2. PRMM dataset structure
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to contain either non-censored or censored informa-
tion, the SA should be defined as the time interval [0, 
tn]. Details about data preparation can be found in 
the literature [32]. Table 3 shows NTED dataset after 
preparation where constant and empty columns were 
re-moved and the analysis constrained to 220 cycles.

The data preparation for the PRMM dataset re-
quires more data transformation than the previous 
case. The datasets must be joined, and the informa-
tion should be transformed. The rolling mean and 
standard deviation were calculated on the telemetry 
data set for each three, six, twelve, eighteen and twen-
ty-four hours. Subsequently, the telemetry data was 
merged with the failure, maintenance and machine 
data. The most important tables of the PRMM data-
set are maintenance and failure. The two tables are 
merged and created a new column which represents 
the calculated time till component replacement. By 
joining the failure table, each replacement record is 
identified if caused by the failure or it was scheduled 
maintenance event. The first event is identified as 

failure event without censoring, while former event 
was identified as non-occurring event with censoring 
status. Unlike the previous one, PRMM dataset con-
tains information about censoring events, so the SA 
was performed on whole time interval.

4.4 Kaplan-Meier Non-Parametric Model

The Kaplan-Meier survival model [33] represents 
a non-parametric model that estimates the survival 
function from the lifetime data set. The model de-
fines the survival function S(t) which represents the 
probability that life is longer than time t:

(5)

 where,
 - Kaplan-Meier survival probability function,

ti - is a time that at least one event happened,
di - the number of events occurred at ti, 
ni - the number of machines at risk at time ti,

Id Cycles event T24 T30 T50 P30 Nf Nc Ps30 Phi NRf NRc BPR

1 192 1 643.54 1601.41 1427.2 551.25 2388.32 9033.22 48.25 520.08 2388.32 8110.93 8.5113

2 220 0 642.87 1600.76 1406.68 552.92 2388.09 9068.44 47.54 520.77 2388.11 8148.15 8.4123

3 179 1 643.51 1604.8 1428.23 551.91 2388.14 9197.52 48.09 519.53 2388.2 8255.34 8.5056

4 189 1 644.53 1612.11 1432.55 551.93 2388.13 9198.32 48.15 519.84 2388.16 8259.42 8.5246

5 220 0 642.63 1591.54 1412.16 553.48 2388.13 9102.11 47.59 521.68 2388.11 8173.86 8.4664

6 188 1 643.47 1600.63 1434.92 550.7 2388.34 9027.96 48.21 518.98 2388.34 8102.82 8.5358

7 220 0 642.89 1596.6 1416.42 553.2 2388.14 9073.62 47.75 520.9 2388.16 8145.22 8.4495

8 150 1 643.87 1602.84 1432.31 551.08 2388.27 9046.16 48.24 519.57 2388.26 8121.27 8.5509

9 201 1 644.04 1595.36 1428.43 552.3 2388.5 9239.76 48.11 520.28 2388.56 8289.63 8.5156

10 220 0 643.46 1604.91 1422.76 551.73 2388.25 9115.15 47.95 520.23 2388.25 8181.11 8.5182

..

99 185 1 643.93 1598.42 1421.56 550.64 2388.29 9050.61 48.29 519.99 2388.24 8127.53 8.5425

100 200 1 643.85 1600.38 1432.14 550.79 2388.26 9061.48 48.2 519.3 2388.26 8137.33 8.5036

Table 3. The first several rows of the NTED after transformation and analysis

machineID datetime comp failure time model age voltmean_3hrs rotatemean_3hrs …

1 5/Jan/2015 6:00 comp4 1 4152 model3 18 186.444687 452.190186

1 5/Jan/2015 6:00 comp1 0 552 model3 18 186.444687 452.190186

1 20/Jan/2015 6:00 comp3 0 4152 model3 18 169.748245 436.644806

1 20/Jan/2015 6:00 comp1 0 360 model3 18 169.748245 436.644806

1 4/Feb/2015 6:00 comp4 0 720 model3 18 174.022934 463.676208

…

100 9/Dec/2015 6:00 comp2 0 3240 model4 5 162.885956 396.215607

100 24/Dec/2015 6:00 comp2 0 360 model4 5 158.8302 471.187683

Table 4. The first several rows of the PRMM after merging machine info, telemetry, maintenance and failure data
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In non-parametric models there are no any spe-
cific mathematical relations for the probability den-
sity, and they are known to be distribution-free. One 
of the widely used such models is Kaplan–Meier es-
timator for modelling survival distributions. During 
the time ti, the parameter ni has cumulative values of 
the total number of machines, so that it can be simply 
calculated as:

(6)

Figure 3 shows the Kaplan-Meier probability 
function for NTED dataset [32].

The Kaplan-Meier model shows that all 100 en-
gines will survive the first 128 cycles. After 150 cycles, 
machines have 90% chance to be in functional state, 
and almost 50% chance to survive after 200 cycles. 
The survival probability after 200 cycles decreases 

rapidly, to 220 cycles which shows the probability of 
28%. The model was calculated with 95% confidence 
interval, as depicted in Figure 3. The confident level 
is colored by different color at different time cycles 
indicating if the probability confidence is good. The 
confidence level at around 200 cycles is larger than at 
other time cycles indicating more uncertainty.

The NTED dataset-based Kaplan-Meier model 
can improve maintenance in the context of planning 
and reduce the number of engines at risk based on 
the probability distribution and confidence level. The 
impact of the model can be in reducing the mainte-
nance cost due to decreased number of the engine 
at risk. 

The Kaplan-Meier model for PRMM dataset was 
created using different component failures. In this 
way, the model can differentiate between compo-
nent failures as well as detect which component has 

Figure 3. Kaplan-Meier probability function diagram for NTED dataset
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less chance to survive certain time duration. Figure 
4 shows Kaplan-Meier models for four components 
of the PRMM dataset. Component “comp2” has 
lower survival time than the other. All components 
have 100% probability to survive 1000 hours, except 
“comp2”. Furthermore, component “comp2” has a 
50% probability to survive 2200 hours, while compo-
nent “comp3” has the same probability of surviving 
4200 hours, which is double than the former. 

As mentioned above, component “comp3” has 
the longest survival time, as identified in the survival 
plot. The analysis of the model also shows that ex-
cept component “comp2”, other components have 
the same initial time of approximately 1200 hours 
with no failure. The superiority of the component 
“comp3” can be identified after 2000 hours, whereas 
component “comp2” has 20% higher probability to 
survive certain numbers of working hours. 

To differentiate working hours between machine 
components, we can estimate working hours for 
50% changes that the component will survive. Fig-
ure 4 depicts that component “comp2” can last 2500 
hours before fail, whereas component “comp3” can 
last 4200 hours, which means it has approximately 

double work life. This information is important for 
the maintenance department, for orders of specific 
machine components.

Figure 5 shows Kaplan-Meier model of PRMM 
dataset in total. The confidence interval is calculated 
at every point along the probability line. Below the 
plot in Figure 5, there is information about the num-
ber of machines at risk, the number of censored and 
number of events at every 1000 hours. The confi-
dence interval is much tighter than in the previous da-
taset, since the censored information is present, and 
the dataset has more information than the previous 
one. The censored information was created due to 
scheduled maintenance. In fact, when maintenance 
is activated by scheduled time, the component is re-
placed regardless of the failure, thus the failure time 
is not known. With this kind of replacement, the fail-
ure time is greater than event and represents typical 
right censored event. 

In the case of PRMM dataset, the Kaplan Meier 
model contributes to improving the management and 
maintenance planning, both in optimizing the num-
ber of machines at risk and in planning and optimiz-
ing the quantities of spare parts (components).

Figure 4. Kaplan-Meier probability function diagram for PRMM dataset separated by components
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The impact of the preventive maintenance model 
is also reflected in the reduction of costs both through 
the reduction of the number of machines at risk and 
the stock of spare parts.

4.5 Cox Proportional-Hazards Model

The Cox proportional-hazards model [33] repre-
sents the regression model used for investigating the 
association between the survival time of the engine 
and predictor variables. The model can be expressed 
based on the hazard function (4):

(7)

where:
h(t) - hazard function estimated by the set of k 
covariates (x1, x2, …, xk),
b1 ,b2 ,…, bk - regressors for measuring the 
influence of the covariates,
h0 (t) - baseline hazard related to the value of the 
hazard if all the xi are equal to zero.

In this paper, the Cox proportional model was 
used to provide influence of several covariates (pre-
dictors) among 21 sensor readings at rate of par-
ticular event. The Cox regression test results show 
several important indicators which define the influ-
ence between the covariate and the hazard rates. 
The first indicator is statistical significance which 
defines the influence between each covariate on the 
hazard rate. 

The Cox regression was performed on the NTED 
dataset first. Figure 6 shows three covariates “Total 
temperature at LPT outlet”, “Total pressure at HPC 
outlet” and “Bypass ratio”, among 21 sensor readings 
with the highest influence in the model.

The statistical significance (lines 23-25) indicate 
that the model is significant since all three p-values of 
the tests (probability, Wald and score) are far lower 
than 0.05. The tests also prove that regressors are sig-
nificant, as shown in lines 6-10. The Concordance 
index 0.77 shows that the model is much higher than 
random. 

Figure 5. Kaplan-Meier probability function diagram for PRMM dataset
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From lines 6-11, one can see the p-value for T50 
is 0.000919, with hazard ratio HR=exp(coef)=1.094 
(line 9) indicating the strong influence between the 
total temperature at LPT outlet and increased risk 
of failure. A similar statement can be defined for the 
BPR. The negative value of the total pressure at HPC 
outlet indicates that the hazard ratio has a strong in-
fluence between BPR and decreased risk of failure 
(line 10). 

Cox regression analysis performed on PRMM 
dataset shows that, among more than 30 covariates 
made during the data transformation and feature 
engineering, only 5 can be identified as significant 
(Figure 7).  The average values of voltage, rotation, 
pressure and vibration in the past 3, 6, 9, 12, 18 and 
24 hours were calculated and defined as covariates.  
However, the test shows that average values of all 
covariates for the last 24 hours have significant in-
fluence on the hazard rate with p-value lower than 
2e-16. Besides telemetry covariates, the machine age 
also has significant influence in the model, and it is 
selected in the Cox model. Lines 26-28 show that all 
three tests have passed with p-values less than 0.005 
and define the influence between each covariate on 
the hazard rate. On the other hand, the Concordance 
index of 0.76 shows a much higher index value of the 
Cox model than random model.

In general, SA-based models predict events with 
probability value as well as with a safe interval. If the 
safe intervals are wider, the probability is less certain 
and vice versa. Since there is no model which can 
predict all failures, developing more specific and di-
verse models can improve the maintenance process 
in more segments.  It is well known that the corre-
lations between the values of sensors and the mal-
functions of production machines are very common 
from long time ago [34] to quite recent time [25]. 
Developing PdM models would be to estimate the 
correlations between sensors and failures, but also to 
estimate the working life of the machines.

5 Discussion

The paper applied the SA method for the PdM 
to estimate the probability of survival of 100 engines 
of the NTED data set, and 100 CNC machines of 
the PRMM dataset. The datasets provide two differ-
ent approaches to data collection and none of them 
are specially made for SA. This means that additional 
data transformation and feature engineering must be 
performed in order to create SA ready dataset. 

The two most popular SA models, Kaplan-Mei-
er and Cox proportional models were created and 

Figure 6. The Cox regression test results for NTED dataset
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tested [2]. The implementation of SA models, spe-
cifically the Kaplan-Meier estimator and the Cox 
proportional-hazards model, in the context of PdM 
for manufacturing processes, has yielded insightful 
results.

Analysis indicates that the Kaplan-Meier model 
for NTED dataset shows much wider confidence in-
terval than that for the PRMM dataset. This is caused 
by the fact that PRMM dataset holds more informa-
tion about failure event than NTED dataset, as well 
as censored information.   

By using Cox proportional hazard model, the in-
fluence of different sensor readings on hazard rates 
were estimated. Both models reach similar perfor-
mance and test indicators. The Cox proportional 
hazard model for NTED data set identified three 
main covariates among 21 sensors reading, whereas 
the Cox proportional hazard model for PRMM data 
set identified 5 covariates as significant. Both models 
pass probability, Wald and score test, and reached 
the concordance index around 0.77. Furthermore, 
all models can be included in the analysis during the 
creation of the maintenance plan and equipment 
ordering since they give valuable information about 
future failures.   

When comparing Cox proportionate models with 
other machine learning methods that we or they used 

in previous works on this topic such as, e.g., Light-
GBM or Deep Learning, it can be stated that the 
former is inferior since they give less accurate pre-
diction [32], [35]. The use of such models therefore 
can be treated as an additional tool for other classic 
PdM methods like Deep learning, Random Forest, 
et cetera.

5.1 Validity and Appropriateness of Models

In the context of the considered case studies, the 
non-parametric Kaplan-Meier estimator and the Cox 
proportional-hazards model have been selected due 
to their specific advantages and proven effectiveness 
in reliability estimation. Both models (Table 5) are 
extensively documented in the literature and have 
demonstrated robustness and accuracy in various 
fields, including medical research and industrial ap-
plications.

5.2 Comparison with Other Models

While the Kaplan-Meier and Cox models are 
well-documented and widely used, it is essential to 
acknowledge other models that could potentially be 
used for reliability estimation. Parametric Survival 
Models (e.g., Weibull, Exponential, Log-normal 

Figure 7. The Cox regression test results for PRMM dataset
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[36]) assume a specific distribution for the survival 
times, which can provide more precise estimates if 
the chosen distribution accurately represents the 
data. However, their applicability is limited when the 
true distribution is unknown or varies across different 
datasets. Accelerated Failure Time (AFT) [35], [36], 
models offer an alternative by directly modelling the 
relationship between covariates and the survival time. 
They assume that the effect of covariates accelerates 
or decelerates the lifetime by some factor. While use-
ful, AFT models require distributional assumptions, 
making them less flexible than Cox models in diverse 
data scenarios. Machine Learning Approaches (e.g., 
Random Survival Forests, Deep Learning) can han-
dle complex interactions and non-linear relationships 
within the data, potentially offering higher predictive 
accuracy [10]. However, they often require large 
amounts of data and computational resources, and 
their interpretability can be limited compared to tra-
ditional statistical models.

5.3 Effectiveness of Kaplan-Meier and Cox 
Models

The Kaplan-Meier and Cox models were chosen 
for their balance of flexibility, interpretability, and ro-
bustness. They provide clear, actionable insights into 
the reliability of machinery components without the 
need for extensive assumptions about the underlying 
data distribution. Their ability to handle censored 
data and incorporate multiple covariates ensures that 
they can effectively capture the complexities of the 
case studies considered.

5.4 Practical Implementation

The application of SA models to the NASA 
Turbofan Engine Degradation Simulation Data Set 
(NTED) and the Predictive Maintenance Modelling 
Guide Data Set (PRMM) has demonstrated several 
practical benefits and challenges. First, successfully 
transforming raw datasets into SA-compatible for-
mats was critical. For NTED, identifying failure times 
and censoring events required careful handling, while 
for PRMM, merging multiple data sources and per-
forming feature engineering were necessary steps. 
The process highlighted the importance of data 
quality and completeness. Missing values, inconsis-
tent records, and noise in sensor readings posed sig-
nificant challenges that had to be addressed through 
preprocessing techniques. Second, the Kaplan-Meier 
estimator provided clear survival probabilities, which 
are intuitive and useful for maintenance planning. 
However, its non-parametric nature limits its abil-
ity to account for multiple covariates. The Cox pro-
portional-hazards model offered deeper insights by 
identifying significant predictors of failure [31]. This 
model's ability to handle multiple covariates made it 
particularly valuable for understanding the impact of 
different factors on machinery survival.

6. Conclusion

The current study builds on previous research in 
PdM and SA and contributes to the body of knowl-
edge by demonstrating the practical application of 
SA models and addressing specific challenges related 

Kaplan-Meier Estimator Cox Proportional-Hazards Model
Validity The Kaplan-Meier estimator is a non-parametric 

model that does not assume any specific distribu-
tion for the time-to-event data, making it highly 
versatile and applicable to various types of data. 
This flexibility is particularly useful in our case stud-
ies, where the exact distribution of failure times is 
unknown.

The Cox proportional-hazards model is a semi-paramet-
ric model that assumes proportional hazards over time 
but does not require the baseline hazard function to be 
specified. This assumption allows the model to accom-
modate varying risk factors while maintaining flexibility 
in its application.

Appropriateness In the NTED and PRMM datasets, the Kaplan-Meier 
estimator effectively estimates the survival prob-
abilities of machinery components over time. This 
model provides clear, interpretable survival curves, 
which are crucial for understanding the reliability 
and expected lifespan of the components under 
study. The estimator’s ability to handle censored 
data, where not all components have failed within 
the observation period, adds to its suitability for 
the datasets used.

The Cox model is particularly suitable for our case 
studies because it can incorporate multiple covariates 
to assess their impact on the survival time. In the NTED 
dataset, it identifies significant sensor readings that 
influence failure rates, while in the PRMM dataset, it 
evaluates the impact of telemetry data on the hazard 
rates. The model’s ability to handle both time-de-
pendent and time-independent covariates makes it a 
powerful tool for understanding the underlying factors 
affecting machinery reliability.

Table 5. Kaplan-Meier Estimator and Cox Proportional-Hazards model
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to data transformation and model implementation. 
By applying transparent and interpretable models 
like Kaplan-Meier and Cox, this study reinforces 
the need for explainability in PdM, enabling main-
tenance planners to make informed decisions based 
on model outputs.

Despite the successful implementation, several 
limitations aspects were identified: data limitations, 
model assumptions, generalizability. Regarding data 
limitations and datasets used we can conclude that the 
lack of censoring information in the NTED dataset 
restricted the analysis, leading to wider confidence in-
tervals and potentially less reliable survival estimates. 
Additionally, the dataset's limited scope (only 100 
engines) may not fully capture the variability in real-
world scenarios. Although PRMM provided more 
comprehensive data, including censoring informa-
tion, the complexity of merging different sources in-
troduced potential errors. The derived features, such 
as rolling means and standard deviations, might not 
fully represent the underlying failure mechanisms. 
The Kaplan-Meier estimator assumes independence 
between events, which might not be held in all manu-
facturing environments. Similarly, the Cox model's 
proportional hazards assumption may not be valid if 
the hazard ratios change over time. Both models as-
sume that the covariates are correctly specified and 
that there are no significant interactions or nonlinear 
effects that are not accounted for. According to the 
findings if the case studies regarding the generalizabil-
ity we can say that the models were applied to specific 
datasets with characteristics. The generalizability of 
the results to other datasets or industries may be lim-
ited. Different types of machinery, operational condi-
tions, and maintenance practices could significantly 
impact the applicability of the findings.

To address the limitations and build upon the 
current work, several directions for future research 
are proposed. Future studies should aim to collect 
more comprehensive and higher-quality data, includ-
ing detailed censoring information and a broader 
range of sensor readings. Integrating data from differ-
ent sources in a more automated and robust manner 
could improve the reliability of the models. Explor-
ing advanced SA models that can handle non-pro-
portional hazards, such as time-varying coefficients, 
could provide more accurate and flexible model-
ing. Machine learning techniques, such as survival 
random forests or deep learning models, could also 
be investigated to capture complex interactions and 
nonlinearities. Implementing and validating the mod-
els in real-world manufacturing environments would 
provide valuable insights into their practical applica-

bility and effectiveness. Collaborating with industry 
partners to conduct pilot studies could help refine 
the models and demonstrate their value in operation-
al settings. Integrating SA models with existing PdM 
systems and Industry 4.0 technologies, such as IoT 
and Cloud Computing, could enhance their utility. 
Developing user-friendly tools and dashboards for 
maintenance planners to interact with the models 
and interpret the results is crucial for practical adop-
tion.

The implementation of SA for PdM in manufac-
turing has shown promising results, providing valu-
able insights into machinery reliability and failure 
patterns. Despite the identified limitations, the study 
offers a robust framework for applying SA models to 
real-world datasets. Future research should focus on 
enhancing data quality, exploring advanced modeling 
techniques, and validating the models in operational 
environments to maximize their practical impact.
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