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ABSTRACT 
 

A new analytic solution for plane-strain bending under tension at large strains is proposed. The 
solution is based on the ideal flow theory for elastic perfectly plastic incompressible materials. 
The variation of the bending moment and tensile force with process parameters is found and 
discussed. 
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1. INTRODUCTION  
 
Ideal plastic flows constitute a class of solutions in the classical theory of plasticity [1]. They are 
defined by the condition that all material elements follow the minimum plastic work path, a 
condition which is believed to be advantageous for forming processes.  The available ideal flow 
solutions are based on rigid plastic material models. Nevertheless, it has been shown in [2] that it 
is possible to satisfy the ideal flow conditions in steady flows of elastic plastic solids. The present 
paper provides an analytic non-steady plane strain ideal flow solution for elastic perfectly plastic 
material. The solution is suitable for describing the process of bending under tension. Such an 
idealization is often adopted for studying practical problems in sheet metal forming [3, 4]. The first 
analytic solution for plane strain bending under tension at large strains has been found in [5] for 
rigid perfectly plastic material. An ideal flow solution for several rigid plastic models has been 
provided in [6]. The present solution is based on the extension of the general method for analysis 
of pure plane strain bending developed in [7] and thus is restricted to incompressible materials.  
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2. GENERAL SOLUTION 
 
A general approach to analysis of plane-strain pure bending of a sheet of incompressible elastic 
and rigid plastic material has been proposed in [7]. It is possible to verify by inspection that the 
part of this solution related to kinematics can be used to describe plane-strain bending under 
tension without any modification. In particular, the mapping between Eulerian Cartesian 
coordinates xy and Lagrangian coordinates is given by 

 

   2 2cos 2 , sin 2x H a s a a s a y H a s a a                 (1) 

 
where H  is the initial thickness of the sheet, a is a function of the time, t, satisfying the condition 
a=0 at t=0 and s is a function of a which should be found by means of stress boundary conditions. 

In addition, the function  s a  must satisfy the condition 

 
1 4s       at     0a    (2) 

 
This condition ensures that x H  and y H  at the initial instant. It is possible to assume 

with no loss of generality that the initial shape of the sheet is defined by the equations x H  , 
0x   and y L   where 2L is the width of the sheet. Then, the shape of the sheet after any 

amount of deformation is determined by the equation 1   , 0   and L H   . Because 

of symmetry it is sufficient to consider the domain 0   (or 0y ). It is also convenient to 

introduce a moving cylindrical coordinate system r  by the following transformation equations 
[7].  
 

2 , 2    r H a s a a  (3) 

 
 

The origin of this coordinate system is located at x H s a   and 0y  . Equations (3) give 

 

 2
0, 1 , 2 ,ou inr H s a r H s a a aL H h H s s a a        (4) 

 
where our  is the outer radius of the sheet, inr  is the inner radius of the sheet, 0  is the orientation 

of the edge of the sheet, and h is the current thickness of the sheet (Fig.1). Using (1) the principal 
logarithmic strains are determined as 
 

   1 2 4         ln a s  (5) 

 
The position of the neutral line is given by 
 

0 ds da     (6) 
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where 0  is in general a function of a. The equilibrium equations reduce to 

 

 
 2

a s s

a s
 

 




 
 (7) 

 
where   is the stress component in the Lagrangian coordinates (   will stand for the other 

stress component), s  and s  are the deviatoric stress components. The difference s s   

can be found from the constitutive equation for this or that material model. It also follows from (3) 
that   rr  and    . The solution to (7) along with the boundary conditions on   at 

inr r  (or 1   ) and  our r  (or 0  ) determines and thus the complete solution to the 

problem. In particular, the solution in [7] has been obtained for 0   at inr r  and  our r . 

 
 

3. IDEAL FLOW SOLUTION 
 
An ideal flow solution is obtained if the neutral line is fixed in the material. Therefore, it is 
necessary to put 0 constant   in (6). Then, the solution to this equation satisfying (2) is 

 

0 1 4s a    (8) 

 
In the case of incompressible elastic perfectly plastic material the constitutive equations give, with 
the use of (5), 
 

   ln 4 , ln 4s G a s s G a s               (9) 

 
In the elastic zone and 
 

0 3s s     (10) 

 
in the plastic zone. Here 0  is the yield stress in tension, a material constant, and G is the shear 

modulus. 
 
 
3.1 Elastic Stage 
 
Substituting (9) into (7), integrating with the boundary condition 0   at 0   and 

excluding s by means of (8) gives 
 

   2 2
0 02 ln 4 1 ln 1 4rr G a a            (11) 
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Using the identity rr rrs s      and (11) leads to 

 

     2 2
0 0 02 ln 4 1 ln 1 4 4ln 4 1G a a a                     (12) 

 
It follows from (8), (9) and (10) that this stage ends when at least one of the following conditions 
is satisfied 
 

     0 0 0ln 1 4 1 , ln 1 4 , 3k a k a k G             (13) 

 
These relations show that the plastic zones at  inr r  and  our r  starts to develop simultaneously 

if 
 

   0 1 2sinhk
cr e k     (14) 

 
Since 0k  , it follows from (14) that 1 2  cr . Moreover, the plastic zone first appears at 

inr r  if 0  cr  and, consequently, at our r  if 0  cr . 

 
 
3.2 Elastic Plastic Stage with One Plastic Zone 
 
Assume that 0 cr  . Then, the plastic zone starts to develop from the boundary our r  at 

 

   2 01 4ka a e     (15) 

 
There are two zones at 2a a , the elastic zone in the domain 21      and the plastic zone in 

the domain 2 0   . Equation (10) in the plastic zone reduces to 0 3s s     . 

Therefore, equation (7) becomes 
 

 
0

3

a

a s
 
 




 
 (16) 

 
and the elastic plastic boundary is determined with the use of (9) in the form 
 

   2 4 4ke s a    (17) 

 
The distribution of the stress   in the plastic zone follows from the solution to equation (16) 

satisfying the boundary condition 0   for 0    
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0 0

1
ln

3
rr a s

s
  
 

     
 (18) 

 
The magnitude of   on the plastic side of the elastic plastic boundary can be found from (18) at 

2  . Substituting (9) into (7) and integrating with the condition of continuity of   across 

the elastic plastic boundary gives the distribution of the stress   in the elastic zone 

 

    2 2 2
2

0 0

1 1
ln 4 ln 4 ln

2 3 3
rr a s

a s a s
sk

   
 

                 
  (19) 

 
Using the identity     rr rrs s , (9), (10), (18) and (19) leads to 

 

      2 2 2
2

0

1 1 2
ln 4 ln 4 ln ln 4

2 3 3 3

a s
a s a s a s

sk k
   


                    
  (20) 

 
in the elastic zone and 
 

0

1 2
ln

3 3

a s

s
 


    
   (21) 

 
in the plastic zone. The pressure over the surface inr r  is determined from (19) at 1    

 

    1 2 2 2
2

0 0

1 1
ln 4 ln 4 ln

2 3 3

rr a sp
s a a s

sk


 
 

                    
 (22) 

 
This stage ends when the plastic zone starts to develop at 1   . The corresponding value of a 

can be found from the first of equations (13) in the form 
 

   1 01 4 1ka a e         (23) 

 
Equations (8) and (17) should be used to exclude s and 2  everywhere in this section. 

A similar analysis can be completed if 0  cr . In this case however the pressure over the 

surface inr r  is negative. Therefore, this case is not considered here. 
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3.3 Elastic Plastic Stage with Two Plastic Zones 
 
There are three zones at 1a a , the elastic zone in the domain 2 1     and the plastic zones 

in the domains 1 1     and 20    . The solution given by (18) and (21) is valid in the 

plastic zone 20    . The solution given by (19) and (20) is valid in the elastic zone. Equation 

(10) in the plastic zone 1 1     reduces to 0 3s s     . Therefore, equation (7) 

becomes 
 

 
0

3

a

a s
 
 


 

 
  (24) 

 
and the elastic plastic boundary is determined with the use of (9) in the form 
 

   1 4 4ke s a     (25) 

 
The magnitude of   on the elastic side of the elastic plastic boundary 1   can be found 

from (19) at 1  . Integrating (24) with the condition of continuity of   across the elastic 

plastic boundary 1   gives the distribution of the stress   in the plastic zone 1 1     

 

       
 

2 12 2
1 2

0 0

1 1
ln 4 ln 4 ln

2 3 3
rr

a s a s
a s a s

s a sk
    
  

  
                 

  

 (26) 
 
Using the identity rr rrs s     , (10) and (26) leads to the distribution of the stress   in 

the plastic zone 1 1     

 

       
 

2 12 2
1 2

0

1 1 2
ln 4 ln 4 ln

2 3 3 3

a s a s
a s a s

s a sk
  

 
 

  
                

  

 (27) 
 
The pressure over the surface inr r  is determined from (26) at 1    

 

      
  

1 2 2
2 1

0 0 2 1

1 1
ln 4 ln 4 ln

2 3 3

rr s a sp
a s a s

a s a sk


 
 

   
  

                   
  

 (28) 
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4. BENDING MOMENT AND TENSILE FORCE 
 
It follows from the equilibrium equations that the pressure over the surface inr r  is related to the 

tensile force per unit length T (Fig.1) by inT pr . Using (4) this equation can rewritten as 

 

T pH s a a   (29) 

 
 

Fig. 1- Geometry of the process 
 
Then, the average stress defined by t T h  follows from (4) and (29) in the form 

 

p s a
t

s s a




 
 (30) 

 

It is seen from (29) and (30) that T   and t   as 0a , unless  p O a  or  p o a  

as 0a  . The pressure over the surface inr r   at the very beginning of the process is 

determined from (11) as 
 

    1 2 2
0 0

0 0

1
ln 1 4 ln 1 4 1

2 3

rrp
a a

k



 

 
           (31) 

 
Expanding the right hand side of this equation in a series in the vicinity of 0a  gives 
 

   0 2 2

0

8 1 2

3

p
a o a

k





         0a   (32) 

 
Substituting (32) into (29) and (30) shows that 0T   and 0t   at 0a   which is in agreement 
with physical expectations. The bending moment is defined by 
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 
ou

in

r

r

M p rdr   (33) 

 
Using (3) this equation can be rewritten in the form 
 

 
02

12

H
M t d

a  


   (34) 

 
Since the stress   and t have been already found (equations (12), (20), (21), (27) and (30), the 

bending moment can be calculated numerically by means of (34) with no difficulty. 
  
 
5. SUMMARY 
 
An analytic ideal flow solution for non-steady flow of incompressible elastic perfectly plastic 
material has been obtained. The solution has been adopted to describe bending under tension of a 
wide sheet. It is expected that the solution found can be used for optimizing the process parameters 
to minimize springback. The solution can also been used to verify numerical codes for sheet metal 
forming. 
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ELASTO – PLASTIČNO NESTACIONARNO REŠENJE 
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REZIME 
 

U radu je dato originalno analitičko rešenje problema savijanja u uslovima ravanskog 
deformacionog stanja (savijanje uz istovremeno zatezanje) i to za slučaj velikih deformacija. 
Rešenje je bazirano na idealnoj teoriji tečenja za slučaj elastično – idealno plastično 
nekompresibilnih materijala. Realizovane su varijacije momenta savijanja i sile zatezanja. 
Dobijena rešenja mogu se koristiti prilikom projektovanja procesa obrade lima, posebno 
uzimajući u obzir fenomen elastičnog vraćanja. 
Ključne reči: Savijanje u uslovima ravanskog deformacionog stanja, analitičko rešenje. 


