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ABSTRACT

Elastic-plastic transitional stresses in a thin rotating disk with edge loading have been studied by
using Seth’s transition theory. Results have been discussed and presented graphically. It has been
seen that higher value of angular speed is required for disc without edge loading. With the effect
of edge loading, disc required lower angular speed. It has been seen that for incompressible
material (i.e. rubber) higher angular speed is required for initial yielding as compare to disc
made of compressible material (i.e. Lead, Copper and Steel). Rotating disk is likely to fracture by
cleavage close to the inclusion at the bore.
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1. INTRODUCTION

Rotating disks are an essential part of the rotating machinery structure, e.g. rotors, turbines,
compressors, flywheel and computer’s disc drive. The analytical procedures presently available are
restricted to problems with simplest configurations. The use of rotating disk in machinery and
structural applications has generated considerable interest in many problems in domain of solid
mechanics. Solutions for thin isotropic disks can be found in most of the standard elasticity and
plasticity textbooks [1-5]. Guven [6] found the elastic-plastic stresses in a rotating annular disk of
variable thickness and variable density under the assumptions of Tresca’s yield condition, is
associated with flow rule and linear strain hardening. To obtain the stress distribution, Guven
matched the elastic-plastic stresses at the same radius r = z of the disc. Perfect elasticity and ideal
plasticity are two extreme properties of the material and the use of ad-hoc like yield condition
amount to divide the two extreme properties by a sharp line which is not physically possible.
When a material passes from one state to another qualitatively different state, transition takes
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place. Since this transition is non-linear in character and difficult to investigate, researchers have
taken certain ad-hoc assumptions like yield condition, incompressibility condition and a strain law
which may or may not be valid for the problem. Seth’s transition theory [7] does not require these
assumptions and thus poses and solves a more general problem from which cases pertaining to the
above assumptions can be worked out. This theory utilizes the concept of generalized strain
measure and asymptotic solution at the critical points or the turning points of the differential
equation defining the deformed field and has been successfully applied to a large number of the
problems [7-14]. Seth [8] has defined the generalized principal strain measure as:
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where ‘n’ is the measure and e;; is the Almansi finite strain components [8]. For n =-2,-1,0, 1, 2
it gives Cauchy, Green Hencky, Swainger and Almansi measures respectively. In this paper, we
investigate the problem of effect of stresses in a thin rotating disk with load edge for different
materials by using Seth’s transition theory. Results have been discussed and presented graphically.

2. MATHEMATICAL MODEL

We considered a thin annular disk of constant density with central bore of radius a and outer
radius b as shown in Fig. 1. The disc, produced of material of constant density, is mounted on an
edge loading. The disc is rotating with angular speed @ about a central axis perpendicular to its
plane. The thickness of disc is assumed to be constant and is taken sufficiently small so that the

disc is effectively in a state of plane stress, that is, the axial stress 7, is zero. The origin of the
polar coordinate system r — @ is assumed to be located at the centre of the disk and hole.
Boundary Conditions

The disk considered in the present study is with variable Load. The inner surface of the disk is
assumed to be fixed to a shaft. The outer surface of the disk is applied mechanical load. Thus, the
boundary conditions of the problem are given by:

0] T, =0at r=a
(ii) T,. =Ty atr=»= (2)

where T}, and T denote stress along the radial direction and load.

Formulation of the Problem
The displacement components in cylindrical polar co-ordinate are given by [8]:

u=rl-pg)v=0 w=dz (3)

where /3 is position function, depending on » = /x® + »* only, and d is a constant.
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Fig la - Schematic diagram of a rotating disk Fig.1b - Geometry of rotating disc
with concentric circular hole
The finite strain components are given by Seth [8] as:
4 1 4 1
err:Eb_(f”ﬁ"i‘ﬁ)z], eHQZE[j-_ﬁZ]
4 4 4 4
ez :%[1—(1—117)2], er0= ex= e =0 4

where B'=df/dr and meaning of superscripts “4” is Almansi.
By substituting eq. (4) in eq. (1), the generalized components of strain become:

el i)

.. =~f-a-ay] e =g =, =0 ©)

The stress—strain relations for isotropic material are given [5]:

y
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where T are stress components, A and x are Lame’s constants, /; = ey is the first strain

invariant, &, is the Kronecker’s delta. Equation (6) for this problem becomes:

24u
.= e.+ey|+2
rr ﬂ/+2‘u[rr 99] He .,
2Au
Ty =———le,. +eyy |+ 2ue 7
0= o [n 9.9] Hegg (M

By substituting eq. (5) in eq. (7), the stresses are obtained as:

1, =B e prh-cr2-c)p1y)

n

ng:27”[3—2c-,8"{2—C+(1—c)(P+1)”}] ®)
Ty=Tp=T,=T,.=0

where C is the compressibility factor of the material in term of Lame’s constant, given by
C =2ul 2+ 2u . The equations of motion are all satisfied except:

i(}ATH')_T&Q"'pa)zrz:0 (9)

dr
where p is the density of the material of the rotating disc. By using egs. (8) in eg. (9), one gets a
non- linear differential equation for g as:

1-(P+1)"

2.2

2-Cp (P +1)"? Z—; = % +p'y J1-C (10)
+(2-c)Yp+1)

where C is the compressibility factor of the material in term of Lame’s constant, given by
C=2ul2+2u and P is dependence function of £ and g is dependence function of » only.

From eq. (9), the turning points of g are P — -1 and too.

Solution through the principal stresses

For finding the plastic stress, the transition function is taken through the principal stress (see Seth
[7, (see Seth [7,8], Gupta and pankaj [9, 10, 11], Pankaj Thakur [12- 23]) at the transition point
T —00,£1. The transition function 7 is defined as:
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where 7 is function or  only and 7 is dimension.
Taking the logarithmic of eq. (11) with respect to r, one gets:

S

Differentiating with respect to », one gets:
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where P is function of g, g is function of »and »B'= gP. Then

2-C+@a-c)p+1yt
{(P+1)+ﬂj—;}

e

(12)

%(Iog 0= {_ nﬁr”P]
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By substituting the value of dP/dg from eq. (10) into eq. (12) and by taking asymptotic value P
— o0, One gets after integration:
R= Ky ) (13)

where K; is a constant of integration ,which can be determined by boundary condition and by
v =(1-C)/(2-C) is the Poisson’s ratio. From eq. (11) and (13), it follows:

Tyo = (27#]1(1” Teo)

(14)
By substituting eq. (14) into eq. (8), one gets:
1-C
2,u(2 - C)K]_r 2-C
Ty =| K2 + n(l—C) (15)
- w? [r 2pa’r

where K, is a constant of integration, which can be determined by boundary condition. By
applying boundary condition (2) in eg. (15), one gets:

b
Lol bTo +w2‘[r2dr

Ky =-a*C | —F—5— +a)2[’.r2pdr]m »
p2-C _g42-C
b
bT, +w2jr2dr
X, - n{1-C) .
2(2—C),u 1-C 1-C

o 2 3
Trr |-« ,0[02 b3 + po-|a (16)
1- ¢ | + 22 3 |_,3
A p2-C _ g2-C 3 |48

Journal for Technology of Plasticity, Vol. 38 (2013), Number 1



49

_ 2
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It is seen from eq. (14) that T,, is maximum at the internal surface, therefore, yielding will take
place at the internal surface and eq. (14) becomes:

(17)

2
1 ;
a’ﬁ(l_c) bTo+p3 [b3—a3]
‘Tge‘r:a = (2 _ C) 1-C 1-C = Y(Say)
p2C _g2C

and angular speed @; necessary for initial yielding is given by:

e rc
3b2[b 2-C _q2-C J(z—c)
272
! b

b -a*k = a-c)
where o, =T, /Y and o, :%Qi(Y/p)]/z.
We introduce the following non-dimensional components as:
R=rlbRy=albo,=T,1Y,
0o =TplY,
Q% = po’b? 1Y and oy =Ty 1Y .

Eqgs. (16), (17) and (18) becomes:

R2C - RZC o 5\|_QF (p3_ 8 (19)
o, = & [00+3(—R0)}3R (r ‘RO)
R 1-RZC
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Egs. (19) (20) and (21) give elastic-plastic transitional stresses and angular speed for thin rotating
disc with loading edge. Stresses and angular speed give by eqgn. (19) (20) and (21) for fully
plasticity C =0 become:

1 1
> .5 | %0 2
R? —R¢ 2 QF (3 p3 (22)
= : -~ LI|R*-R
O, R‘l— 1/2, +§Z/(1RSJ 3R ( 0)
1 )
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From eqn. (19) the angular speed @, > w; for which the disc becomes fully plasticC=0atr = b

is given by:

0y L3 b [%)-a0) 9

3. RESULTS AND DISCUSSION

Curves have been drawn in Fig. 2, between angular speed required for initial yielding along the
radius of a disc with and without edge loading. It has been seen that higher value angular speed is
required for disc without edge loading.
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With the effect of edge loading, disc required lower angular speed. For incompressible material i.e.
rubber higher angular speed is required for initial yielding as compare to disc made of Lead,
copper or Brass and Steel materials.

Table 1: Angular speed required for initial yielding and fully plastic state.

Angular speed Angular speed 5 e |
- i ercentage Increase
Compressibility of required for ;ﬁﬂ;'ﬁi;?; in angular speed
Load material initial yielding Atate —
C o o (e 197 ~1)x100
2
0 (Rubber material) 1.420161 2.008411 18.92071307 %
0.25 (Lead material) 1.383601 3.008411 47.45623823 %
0.00 | 4.5 (Copper or Brass 1.336737 4.008411 73.16620448 %
material)
0 (Rubber material) 1.007304 5.008411 122.9819450 %
0.25 (Lead material) 1.040744 6.008411 140.2745975 %
0.101 | 65 (CopperorBrass | 0904092 7.008411 178.4219483 %
material)
0 (Rubber material) 0.391589 8.008411 352.2285065 %
0.25 (Lead material) 0.355029 9.008411 403.7234643 %
0.301 | o5 (CopperorBrass |  0.308165 10.008411 469.8898339 %
material)

It can be also seen from Table 1 that for compressible material (i.e. Lead, copper or Brass, Steel
materials ) higher percentage increased in angular speed is required to become fully plastic as
compared to rotating disc made of incompressible material (i.e. rubber). With the effect of loading
edge, the percentage in angular speed much increased as compare to without edge loading.

Curves have been drawn in figure3, stresses distribution at elastic-plastic transitional state and
fully plastic state of a disc with edge loading and radius R = r/b. It has been seen that the
circumferential stresses has maximum value at the internal surface of the rotating disc made of
rubber material as compare to Lead, Copper or brass and Steel materials. With the effect of edge
loading stresses must be decreased with increase values of edge load.
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Fig.2 - Angular speed required for initial yielding along the radius of a disc with and without

edge loading.
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Fig. 3 - Stresses distribution at elastic-plastic transitional state and fully plastic state of a disc
with edge loading and radius R = r/b.

4. CONCLUSION

It has been seen that higher value of angular speed is required for disc without edge loading. With
the effect of edge loading disc required lower angular speed. It has been seen that for
incompressible material i.e. rubber required higher angular speed for initial yielding as compare to
disc made of Lead, Copper or Brass and Steel materials. Rotating disk is likely to fracture by
cleavage close to the inclusion at the bore.

Journal for Technology of Plasticity, Vol. 38 (2013), Number 1



53

REFERENCES

[1] Timoshenko, S.P. & Goodier, J.N., Theory of Elasticity, McGraw-Hill, New York, 1970.

[2] Blazynski, T.N., Applied Elasto-plasticity of Solids, McMillan Press Ltd., Londan, 1983.

[3] Johnson, W. & Mellor, P.B., plasticity for Mechanical Engineers, Van-Nostrand Reinhold
Company, Londan,1962.

[4] Chakrabarty, J., Theory of Plasticity, McGraw-Hill, New York, 1987.

[5] Sokolnikoff 1.S., Mathematical theory of Elasticity, 2™ edition, New York, pp. 65-79,1952.

[6] U. Guven, Elastic-plastic stresses in a rotating annular disc of variable thickness and variable
density, Archive of Appl. Mech., 61, 1991, pp. 548-552.

[7] B. R. Seth, Transition theory of Elastic- plastic deformation, Creep and relaxation, Nature,
195,1962, pp. 896 -897.

[8] B.R. Seth, Measure concept in Mechanics, Int. J. Non-linear Mech., Vol. 1, No. 1,1966, pp.
35- 40.

[9] S.K. Gupta, Pankaj Thakur, Creep Transition in a thin rotating disc with rigid Inclusion,
Defence Science Journal, India, Vol. 57 ,No. 2, 2007, pp. 185-195.

[10]Pankaj Thakur, S. K. Gupta, Creep Transition in an isotropic disc having variable thickness
subjected to internal pressure, Proceeding National Academy of Science, India, Section- A
78(1), pp. 57-66,2008.

[11] Pankaj Thakur, S. K. Gupta, Thermo Elastic-plastic transition in a thin rotating Disc with
inclusion, Thermal Science, Vol. 11, No. 1, 2007, pp. 103-118.

[12] Pankaj Thakur, Elastic - plastic transition stresses in a transversely isotropic thick-walled
cylinder subjected to internal pressure and steady state temperature, Thermal Science, Vol. 13,
No. 4, 2009, pp. 107-118.

[13]Pankaj Thakur, Elastic-plastic transition stresses in a thin rotating disc with rigid inclusion by
infinitesimal deformation under steady state Temperature, Thermal Science, Vol. 14, No. 1,
2010, pp. 209-219.

[14]Pankaj Thakur, Creep Transition Stresses in a thin rotating disc with shaft by finite
deformation under steady state temperature,

Thermal Science, Vol. 14, No. 2, 2010, pp. 425-436.

[15] Pankaj Thakur, Elastic - Plastic Transition Stresses In Rotating Cylinder By Finite
Deformation Under Steady- State Temperature, Thermal Science, Vol. 15, No. 2, 2011, pp.
537-543.

[16] Pankaj Thakur, Creep Transition stresses of a Thick isotropic spherical shell by finitesimal
deformation under steady state of temperature and internal pressure, Thermal Science
International Scientific Journal, Belgrade, Serbia and Montenegro, Vol. 15, Suppl. 2, pp.
S157-S165, 2011.

[17]Pankaj Thakur, Steady thermal stress and strain rates in a rotating circular cylinder under
steady state temperature, Thermal Science International Scientific Journal, Vol. 17, No. lor
2,2013 DOI REFERENCE: 10.2298/TSCI1110315080P.

[18] Pankaj Thakur, Steady thermal stress and strain rates in a circular cylinder with non-
homogeneous compressibility subjected to thermal load, Thermal Science International
Scientific Journal, Vol. 17, No. 1lor 2, 2013 DOl REFERENCE: 10.2298/TSCI110318079P.

[19] Pankaj Thakur, Stresses in a thin rotating disc of variable thickness with rigid shaft, Journal
for Technology of Plasticity, Serbia, Vol. 37, Number 1, pp. 1-14, 2012.

Journal for Technology of Plasticity, Vol. 38 (2013), Number 1



54

[20] Pankaj Thakur, Elastic - Plastic Transition in a Thin Rotating Disc having variable density
with Inclusion, Structural Integrity and life, Serbia , Vol. 9, No. 3, 2009, pp. 171-179.

[21] Pankaj Thakur, Effect of transition stresses in a disc having variable thickness and Poisson’s
ratio subjected to internal pressure, WSEAS TRANSACTIONS on APPLIED and
THEORETICAL MECHANICS, Vol. 6, No. 4, 2011, pp. 147-159.

[22] Pankaj Thakur, Creep transition stresses in a spherical shell under internal pressure by using
lebesgue measure concept, International journal Applied Mechanics and Engineering, Poland,
Vol. 16, No. 3, 2011, pp. 83-87.

[23]Pankaj Thakur, Deformation in a thin rotating disc having variable thickness and edge load
with inclusion at the elastic-plastic transitional stresses journal Structural Integrity and life,
Serbia, Vol.12, Nol, 2012, pp.65-70 .

Journal for Technology of Plasticity, Vol. 38 (2013), Number 1



55

NAPONSKO STANJE U TANKOM DISKU SA
IVICNOM SILOM ZA RAZLICITE MATERIJALE DISKA

Pankaj THAKUR
Department of Mathematics, Indus International University Bathu,
Una, Himachal Pradesh- 174301(INDIA)

REZIME

Rotirajuci diskovi su jedan od osnovnih delova rotacionih masinskih sturktura, kao §to su rotori,
turbine, kompresori, kompjuterski diskovi... Ranije izvedene analiticke procedure su ogranicene
samo na problem jednostavne konstrukcije. U ovom radu vrSena je analiza napona u tankom
rotirajuc¢em disku sa ivicnom silom Naponi su izvedeni su za elasto-plasticno i potpuno plasticno
stanje pomocu Seth-ove tranzicione teorije. Dobijeni rezultati su diskutovani i graficki
prezentovani. Zakljuceno je da je veca ugaona brzina neophodna kod diskova bez ivicnih sila.
Takode se zakljuceno da su za materijale poput gume neophodne vece ugaone brzine za plasticno
teCenje materijala nego za metalne materijale poput olova, bakra i celika. Veca je i verovatnoca
da ée doci do loma roirajuceg diska na mestima blizi otvoru.

Kljuéne reci: naponi na rotirajuc¢em disku, pomeranja, rotirajuci disk, ugaona brzina
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