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Convolutional Neural Network for generative 
design framework of 3D chair  

1. Introduction

Due to the crucial competition of recent manu-
facturing industry, leading companies are receiving 
pressure of customized products and fast model shift 
causing shorter product lifecycle than before in order 
to keep market leaders [1]. The increasing require-
ments of customers in the market has led to the emer-
gence of various innovative platforms in a short peri-
od. The growing demand for individualized products 
and e-commerce platforms gives customers a way to 
easily compare various products at the same time. 

This, in turn, creates a competitive market, and sub-
sequently encourages manufacturers towards generat-
ing newer ways to cater to the rising demand. A short-
er product lifecycle means a reduction in the product 
development procedure, and here, each activity is 
labor-intensive and requires highly experienced and 
skilled labor. Customized products with high added 
value and reflecting trends must be developed imme-
diately in the design and production phases [2]. The 
challenges associated with the current development 
process can be summarized as follows: The decision-
making process is time-consuming because of the 
difficulty in accumulating subjective knowledge and 

To actualize an advanced smart factory, personalized products are important to develop im-
mediately during the design stage, particularly when producing novel shapes, which demands 
experts with many design experiments. This study proposes an automated 3D shape design 
system that actively evolves into new products quickly during the design stage. The frame-
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generative design process, reduce the need for human intervention, and automate design 
novelty evaluation, thereby addressing a significant research gap. The proposed framework 
was applied to create a new chair design procedure wherein new 43 chairs were generated in 
a single iteration with 989 existing chair shapes. The proposed framework for generative de-
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experience. Therefore, an automatic framework of 
product development using a data-driven approach 
that can analyze costs and novelties without human 
intuition is necessary [3].

A representative application of automatic physi-
cal design is topology optimization [4], wherein both 
redesign approaches possess the theoretical structure 
and algorithm of each domain. Such a knowledge-
oriented design tool is utilized in various domains 
such as topology optimization and is widely used in 
mechanical design products. For the existing design 
method, parametric design or topological optimiza-
tion was developed to supplement the mathematical 
or mechanical modelling. However, the primary limi-
tation of this method that it cannot create an original 
design. Many research groups who are invested in 
concepts related to deep learning have recently fo-
cused on developing a learning model for 3D mod-
elling information. The 3D Generative Adversarial 
Network (3D GAN) [5], PointNet [6], and ShapeNet 
[7] are examples of deep learning applications for 
3D shapes. However, even though this method can 
create new forms, it does not cater to artificial intel-
ligence, which is necessary for a systematic as well as 
automatic verification of the same. Thus, an interface 
that allows experts to intervene in the final form is 
required. 

The method proposed in this paper is different 
from the traditional design method or expert system-

based design method in the automation ratio. The 
illustration comparing those differences is provided 
in Figure 1.

Traditional design approaches create new con-
cepts through discussions with the company’s de-
velopment team and interviews with external people 
such as customers. All the work is done by hand, and 
it requires the experience and time of many work-
ing professionals. On the other hand, design systems 
based on expert systems also require human deci-
sions at each stage. The design expert system is used 
to support the optimized design of each component. 
Parametric design and topology optimization are 
methods used for detailed design, and there are many 
initial conditions that experts need to input to create 
a conceptual design. However, even in this method, 
the results vary greatly depending on the proficien-
cy of the design team because push, an expert who 
requires a lot of design experience, is absolutely re-
quired. Therefore, in order to overcome this limita-
tion, in this study, we propose a concept generation 
method that can verify the novelty following creation 
and classification of a new image based on a design 
catalogue using an automated deep learning model.

The primary objective of this study is to address 
the limitations associated with traditional and expert 
system-based design methods, which necessitate sub-
stantial human intervention and decision-making. 
A more automated approach to generative design, 

Figure 1. The comparison of the legacy process and the proposed process of product development



3Park et al.

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

utilizing advanced deep learning techniques, is pro-
posed. This approach not only reduces the need for 
human intervention but also enhances the efficiency 
and effectiveness of generative design, especially for 
3D products. Furthermore, a novel approach is in-
troduced by the proposed framework, employing a 
Variational Autoencoder (VAE) model within a 3D 
Convolutional Neural Network (3D CNN) to gener-
ate new shapes based on an existing product-form da-
tabase [8], [9]. This innovative method is believed to 
significantly improve the efficiency and effectiveness 
of generative design across various industries.

In this study, an automated 3D shape design 
system was developed that rapidly evolves into new 
products during the design stage in an intelligent fac-
tory environment. New forms are generated from 
the current product-form database by the proposed 
method. Additionally, fresh shapes are created 
through a VAE that has learned the existing shapes. 
A 3D CNN model, capable of recognizing product 
types, is constructed, facilitating the development of 
an automatic design system that identifies multiple 
product images in 3D space and derives new recom-
mended shapes.

The proposed framework for generative design 
of 3D chairs introduces a novel approach by utiliz-
ing a VAE model within a 3D CNN. This innova-
tion effectively addresses a research gap in the field 
by offering a more efficient and automated method 
for generating 3D products, distinguishing itself from 
prior works primarily focused on 2D images or lack-
ing deep learning techniques. Furthermore, an auto-
mated deep learning model for evaluating the novelty 
of generated designs is introduced, adding a unique 
dimension to the quality assessment of generative de-
signs.

The paper is structured as follows: Section 1 
describe the background and motivation of this re-
search. In Section 2, previous generative design ap-
proaches are compared, and their limitations are dis-
cussed. Section 3 outlines the proposed architecture 
for generating a new design using an existing product 
database and explains the generative models. Section 
4 explains the outcomes of the experiment using a 
chair product. The performance of the proposed ap-
proach is compared with that of conventional models 
has been discussed in detail in Section 5. Finally, the 
conclusions are presented in Section 6.

We summarize the key contributions of our work 
as follows:

(1)	 We present a novel operation for learning 
from point clouds to better capture local 

geometric features of point clouds while still 
maintaining permutation invariance.

(2)	 We show the model can learn to semanti-
cally group points by dynamic.

The increasing demand for individualized prod-
ucts and e-commerce platforms gives customers a 
way to easily compare various products at the same 
time. A shorter product lifecycle means a reduction 
in the product development procedure. Data-driven 
approach that can analyze costs and novelties without 
human intuition is necessary. This study proposes a 
framework to create a new product model using 3D 
deep learning models. The proposed method creates 
a new form based on the current product-form data-
base. The suggested approach may fully automate the 
design process, from generation process until evalua-
tion process. This represents a meaningful contribu-
tion since the proposed method connected the whole 
process. A new shape is created through a variational 
autoencoder that has learned the existing shape. The 
performance of the proposed approach is compared 
with that of conventional models.

2. Literature review

This section describes the overall technologies of 
computer-aided product design in terms of automat-
ing design change or design evolutions. Early com-
puter system for product design was a simple sup-
porter of drawing tasks but the benefits of computer 
usage was found in re-calculating each dimension 
updated by product changes without human works. 
Parametric design defined the concept of dimensions 
and constraints in drawing notations. Topology op-
timization, Various 3D representation data formats, 
3D Neural networks, Generative design have acceler-
ated the automation of product design than ever.

2.1. Parametric design

The automation of the design process has been 
widely studied ever since the Computer-Aided De-
sign (CAD) system was introduced. The automation 
was found in the emergence of the concept of para-
metric design, which is a method for generating a 
new draft drawing by adjusting the dimension value. 
This design method has been applied in various 
ways, from the overall structure of a product to the 
detailed design of specific parts. Myung et al. [10] 
proposed a knowledge-based design system for the 
overall structure of a Computer Numerical Control 
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(CNC) machine tool that is guided by parametric 
design. Han Li. et al. [11] suggested a method that 
enables rapid practicing from design to construction 
through parametric design to reproduce the gears 
and joints required for machinery maintenance. As 
shown in previous studies, parametric design has the 
ability to adjust to specific dimensions of predefined 
drawings according to user requirements, but it is 
difficult to obtain creative products mainly because 
parametric design makes only predefined shapes in 
advance.

2.2. Generative design and Topology 
optimization

The more advance of design automation started 
after finite element method is applied to structure 
analysis. As computer-based structural mechanics 
was developed and enabled an automated design 
method, a generative design based on an optimal 
design method was introduced [12]. Similar to 
parametric design, Liu et al. [13] proposed topol-
ogy optimization, which distributes materials to 
optimal positions based on constraints such as de-
sign area and boundary conditions while simultane-
ously transforming the product shape. This design 
method is referred to as generative design, which 
can find an original design by iteratively changing 
the constraints and parameters of a design structure 
optimization method, such as topology optimiza-
tion [14], [15]. Some research studies on generative 
design approaches have attempted integration with 
deep learning. Oh [16] proposed a two-dimensional 
generative design of tire wheels that augments alter-
native shapes using topology optimization and ex-
plored new feasible shapes using deep learning to 
create various shapes, considering both aesthetic and 
structural aspects. Sun et al. [17] applied reinforce-
ment learning to the topology optimization of two-
dimensional and three-dimensional environments 
to derive various design alternatives. However, only 
a few studies have focused on design methods that 
automate creative product design.

2.3. 3D Data Type

As far as specialized CAD software, such as fi-
nite element method, are increased, 3D representa-
tion data formats are suggested by various areas of 
product development. There has been a continu-
ous change in methods that express expressing 3D-
shaped objects as data [18]-[20]. In classical com-

puter science, 3D data-related research has been 
conducted using multi-view [21], [22]. The data 
formats should be converted to ensure that these 
3D data can be read by computers [23]. There are 
various methods to express 3D data types, such as 
B-spline, STL, and STEP. However, point cloud 
and voxel data formats are mainly used in computer-
vision AI [24]-[27]. The point cloud is a data form 
that can be obtained through scanning using a depth 
camera or RGB-D camera in real 3D objects, form-
ing a set of points in which objects are defined by 
coordinates on the X-, Y-, and Z-axes, and can be 
used as raw data [10]. Voxel, in the form of pixel 
in 2D images, represents a form of data that indi-
cates if each cube is occupied through 0 and 1 in 
a lattice-shaped three-dimensional space, and can 
also represent colors by adding dimensions such as 
2D images. Voxnet algorithms convert point cloud 
data into voxels through the occupancy grid [28]. 
These are the means to collect product information 
in terms of different aspects. The way to create new 
product design is to re-organize features of existing 
product shapes. The increase of 3D data standards 
has helped make rich in product data management 
and was the fundamental of applying deep learning 
to new design generation.

2.4. Recognition of 3D Data

Since the neural network model for 3D shape data 
was proposed [21], a lot of innovative learning mod-
els was applied to various 3d shapes. Qi et al. [29] 
presented an algorithm that is suitable for this pur-
pose by receiving data in the form of a point cloud. 
Using a multilayer perceptron, the features of each 
point are extracted, and the characteristics of the en-
tire object are learned. In addition, Qi et al. [30] also 
overcomes permutation innovation and innovation 
under transformation, thus improving the classifica-
tion and segmentation performance. Qi et al. [30] 
and Li et al. [31] applied PointNet to improve the 
capability of capturing local structures. The 3D CNN 
enhances the dimensions of the existing 2D data rec-
ognition model in the form of a pixel. It recognizes 
three-dimensional (3D) data in the form of voxels. 
The existing 2D CNNs move the square filter of the 
grid and grasp the correlation between adjacent data 
on the plane. The 3D CNN moves the grid’s hedral 
filter and identifies the correlation between adjacent 
data in space [32]. As high-dimensional data becomes 
more prevalent, 3D CNN is gaining increased atten-
tion and undergoing rapid development [33].
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2.5. 3D Generation

A deep learning model for generation is based on 
an algorithm that learns the probability distribution, 
and it uses existing data to create new data with a dis-
tribution that is similar to that of existing data. Based 
on the format of the existing autoencoder model, the 
VAE learns the model by placing the input and out-
put as same data. However, the latent vector helps es-
timate P and σ of the probability distribution to learn 
the probability distribution and generate new data 
[34], [35]. There are several works since 2016 in ap-
plying GAN for 3D shape processing. Some studies 
tried GAN to generate detailed 3D shapes of objects 
from 2D images [36], [37], generate realistic image 
from text [38], [39], also generate 3D objects from 
probabilistic space by leveraging recent advances in 
volumetric convolutional networks and generative 
adversarial nets. However, even though they succeed 
in the generation process, the selection for the nov-
elty is still being manually selected [40]. Point cloud 
up-sampling network based on GAN is suggested 
to learn a rich variety of point distribution [41]. An 
RL-based generative design framework was applied 
to enhance the diversity of topology optimized de-
signs in 2-dimension shape of automotive wheel [42]. 
Meanwhile, even though our model has not passed 
all the stages of generation, selection, and evaluation 
properly, our model includes every process, there-
fore it has higher difficulty.

2.6. Collaborative design in virtual reality

Previous studies have presented a few design 
methods related to design that generate generation 
using deep learning. However, the methods for ar-
bitrarily creating shapes using artificial intelligence 
or finding novel objects that have not been consid-
ered before having recently emerged. Therefore, the 
purpose of this study is to limit the automatic shape 
3D generation system architecture that can creatively 
generate phenomena related to the intended catego-
ry, rather than the generation of a simple production 
slender man without any direction. Therefore, in this 
situation, the following problems must be solved:

(1)	 Generation: We need a generation model 
based on deep learning that can automati-
cally produce new designs similar to previ-
ous designs.

(2)	 Classification: It is necessary to build anoth-
er deep-learning model that can determine 
whether a new design is available. Some de-

signs created with the generation model are 
not related to previous designs or have inap-
propriate shapes.

(3)	 Evaluation: New designs made by the genera-
tion model should be evaluated to determine 
whether they are creative. Generation mod-
els sometimes form shapes that are the same 
as previous shape.

To address the aforementioned issues, this study 
presented an architecture for the entire process of 
constructing, inputting, generating, classifying, and 
judging data from video 1, and tested it based on a 
specific case.

3. Methodology

This chapter introduces a deep-learning-based 
design automation process that can be used in the 
existing design process steps in order to overcome 
the limitations of the design automation process 
discussed in the previous section. A typical prod-
uct development process involves five main stages: 
market analysis, conceptual design, detailed design, 
prototype production, and redesign. The important 
stage of finding a new product shape corresponds to 
the concept design stage, that is, concept generation. 
Conventionally, the concept generation method in-
volves the creation of a functional combination using 
a morphological chart and then reflecting the aesthet-
ic analysis accordingly. However, because aesthetic 
elements and functional parts have an indirect con-
nection, it is difficult to create them as explicit rules 
for computer programming. Therefore, in this study, 
another deep learning method with the ability to cre-
ate a new shape is performed after constructing a da-
taset of final product designs that have already been 
made with aesthetic and functional elements and 
learning it through data-based deep learning. Thus, 
we propose a method for reproducing a new product.

The deep learning model, that is trained based on 
the existing dataset, created a new chair 3D model for 
the pseudo-model generation algorithm that is gener-
ated by random number generation. Existing design 
processes use morphological charts to generate new 
product designs. Thus, the feasibility of a new design 
is evaluated by the expertise of the design team and 
the know-how database in the company. However, 
the limitation is that for the creation method of such 
a designer, product diversification increases, the load 
on design work increases, and it is difficult to respond 
quickly to the market. Therefore, in this study, we 
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propose an algorithm for automatically generating 
new product models. Product development teams 
can provide new designs without modelling in CAD 
work.

In this paper, we propose a deep learning model 
that creates a chair for a desired trend using a da-
ta-driven method. The automatic creation of new 
product shapes guides product development teams 
towards new designs without modelling CAD work. 
The learning process consisted of data collection, 
generation, classification, and evaluation. First, the 
existing product chair model was used as the data-
set. The deep learning model for model generation 
consists of voxel-based 3D model generation, chair-
shape screening, chair-type classification, and novelty 
evaluation. Specifically, the variation autoencoder 
model is used to develop a voxel-based 3D model 
that leverages existing product training data. The gen-
erated data were then subjected to chair similarity 
and category classification. The 3D convolution neu-
ral network determines whether the shapes generated 
have a chair-like shape, and an autoencoder trained 
with a legacy dataset tries to reconstruct the generated 
shapes and calculate the noise to study the novelty as 
compared to legacy shapes. Through this automated 
design process, a chair with a related trend shape is 
created with minimal manual work and without high 
expertise. The whole procedure is shown in Figure 2. 
Point Cloud requires a large amount of learning data 
when utilizing 3D CNN. 3DPointNet, for example, 
learns the position information of the PC using T-
net, which necessitates a large amount of learning 
data. As a result, both Voxel and PC have limitations 
in that they require extra learning data.

This process differs with respect to two main as-
pects. In the concept generation of the existing design 
method, an alternative is created using a morphologi-
cal chart that is based on functional elements, and an 
aesthetic evaluation is then performed to materialize 
the new design. At this time, to find an alternative 
that satisfies both functional and aesthetic factors, it is 
necessary to conduct many discussions and manual 
work with many people. On the other hand, in the 
limited method, a trendy chair can be created based 
on data. If the dataset is tuned according to the de-
sired trend, a new shape similar to or in the same 
trend can be easily created. Because the learning data 
are automatically generated through adjustments, 
less human expertise is required. By comparing the 
generated data with the chair similarity, it is possible 
to simultaneously analyze whether a meaningful phe-
nomenon is present and to compare the authenticity 
with existing images. The proposed method has the 
ability to create trendy shapes with minimal knowl-
edge. 

3.1. VAE for Generation

The variation autoencoder is a neural network 
model that was developed by Kingma and Welling 
in 2014 [34]. This model compresses the input into 
a constrained multivariate latent vector that repre-
sents P and σ that indicate the probability distribu-
tion information. The model’s outputs are the results 
of restructuring the latent information and creating 
new data similar to the input data with the base of the 
latent distribution. The structure of variational auto-
encoder is depicted in Figure 3. The modification of 

Figure 2. Whole procedure of automated product design procedure
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the layer structure helps create diverse results. Ow-
ing to these characteristics, a variational autoencoder 
is used in order to generate new shapes by divert-
ing the 3D convolution layers with voxel input data. 
Through this process, the model can automate the 
design by creating a new type of product shape by 
referring to the existing released product shape. The 
3D VAE learns the probability distribution based on 
existing product shape data to create shapes similar 
to existing shapes [34]. Using the 3D convolutional 
layer, it verifies the correlation between adjacent vox-
els of existing data, computes information with P and 
σ vectors in latent space and updates the weight by 
feedback between new 3D data generated through 
Depth Estimation Reference Software (DERS) and 
the actual data entered [44]. In this process, the late 
vector approaches the existing data probability distri-
bution, and the decoder part can create 3D data that 
more similar to the actual data than the late vector.

For the experiment, we used 989 chair datasets in 
the form of 64 × 64 × 64 voxels. We were inspired 
by 3D VAE, and the generator was implemented 
to form the same format as the actual data from a 
64-dimensional vector with a uniform distribution 
between 0 and 1. In the network of the encoder part, 
the number of kernels was increased to 64, 128, 256, 
and 512 with each passing layer, the kernel size was 
set to 4, and the strands were set to 2, 2, 4, and 4, 
respectively. Subsequently, it was completed by fully 
connecting the P and σ vectors with 64 dimensions 
through a flatten process. The decoder part was de-
signed to extract values through sampling from P and 
am, connect them fully with 512 nodes, and gener-

ate 3D transpose convolutional layer data. Each filter 
number was 256, 128, 6432, 1, the kernel size was set 
to 4, and the strands were set to 2, 2, 4, 2, and 2. Each 
layer used the ReLU activation function, and only the 
last layer was used to determine the presence or ab-
sence of grid voxels using a sigmoid function. The 
structure of the proposed model is shown in Figure 
4. Our model is a method of doing all the process 
of Generation, Selection, Evaluation therefore it has 
a higher difficulty. It has already been performed as 
a GAN [41], but the existing model has not passed 
all three stages, hence it is now being improved. As 
a result, the complete procedure may be carried out 
only if a GAN that is distinct from the previous one 
is created. Successful models are being developed in 
response to changing situations and networks. In the 
case of 3D, please refer to the fact that the difficulty 
of learning is much higher.

3.2. 3D CNN for Classification

Not all data generated through VAEs possess an 
intact form. Therefore, there is a need for an auto-
mation algorithm that plays contributes to the qual-
ity control of the actual process. The 3D CNN al-
gorithm is responsible for the binary classification of 
existing specific product shape data and data that do 
not automatically adopt the desired data shape and 
discard the design that fails to do so [45]. In the ex-
isting 2D CNN algorithms that recognize pixel-type 
data, the 3D CNN algorithm, wherein one dimension 
is added, learns the positional correlation between 
each voxel, with each three-dimensional filter mov-

Figure 3. Basic Concept of VAE 
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ing in the aspect and height acquisition. After pass-
ing through several layers, they learn a wider range of 
locational correlations, and after passing through the 
Fully Convolutional Network (FCN) layers, they are 
finally connected through a sigmoid activation func-
tion as a binary classification. This helps separate 
good and defective products and receives feedback 
through a cross-entropy function. The conceptual 
model of 3D CNN is illustrated in Figure 5.

The 3D CNN checks whether the generated chair 
is defective. Among the numerous data generated 
through VAEs, efficient data augmentation requires 
that the generated data be classified according to the 
purpose and the selected data be re-entered to con-
tinuously generate high-quality chair data effectively. 

To automate this process, a 3D CNN-based deep 
learning model was constructed to classify the chair 
shape and data that were not among the data output 
to voxel. After repeatedly undergoing the classifica-
tion process, only filtered, (refined chair-shape) data 
can enter the input of the VAE and gradually pro-
duce accurate chair formation. The main reason for 
classifying data using the 3D CNN structure is that 
the input of the dataset is voxel. Because the voxel 
itself floats grid-type data, a 3D CNN can be used 
mainly because it does change the shape of the data. 
Although a model to classify the point cloud again by 
changing data into a point cloud can be easily built, 
a chair-forming classification model was built by bor-
rowing a 3D CNN structure to create a model with 

Figure 4. Architecture of VAE

Figure 5. Basic Concept of 3D CNN
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the ability to maintain the shape of the voxel owing 
to an additional time to change data and increase the 
size of datasets as shown in Figure 6. The network of 
the 3D CNN model recycled the encoder portion of 
the previously utilized 3D VAE model and was com-
pleted by gradually reducing the number of nodes to 
128 and 16 through the fully connected layer after 
flattening, and finally placing one node that returns 
0 and 1.

3.3. Similarity evaluation

To derive a novel chair model, the differences 
from the existing chair were compared. The differ-
ences are identified based on whether the voxel is 
filled in the same position between the existing and 
new shapes [46]. By replacing the space of voxel with 

a binary, the space occupied by the voxel is treated 
as 1, and the space that is not treated as 0. The nov-
elty can be determined by calculating the ratio of the 
combination and intersection of all 64 × 64 × 64 vox-
els compared to Design’s data, which can be used 
to compare the created data. The overall structure is 
shown in Figure 7.

3.4. Collaborative design in virtual reality

As the Voxel output is an unfinished form, we 
use VR collaborative design to quickly create a us-
able conceptual model. This method derives the final 
concept more quickly than the expert system design 
process and the conventional design process. As the 
overall shape has already been created by AI, the 
discussion with experts can continue in detail. The 

Figure 7. Architecture of autoencoder to evaluate similarity

Figure 6. Architecture of 3D CNN
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proposed virtual collaboration design operates as 
follows. The output of the voxel model should be 
converted into a form which can be used in a CAD 
system. In particular, voxel data may not have a par-
tially accurate design because the exact shape of the 
connection is not described and only a similar chair 
shape. It is therefore converted into a boundary rep-
resentation or surface model capable of being used 
in a CAD system. In this process, the density of the 
whole form may vary depending on the level at which 
all voxel cells must be restored. A design team con-
sisting of industrial designers, ergonomic designers 
and structural designers simultaneously accesses vir-
tual reality and constructs the final concept with the 
restored CAD data. In this paper, each function out-
lined above was applied to the design of the chairs. 

4. Experiment

4.1. Data

In the experiment, the VAE algorithm learns us-
ing 3D data in the form of existing chairs and then 
creates similar chair shapes through probability distri-

bution. We used the Chair data of Modelnet40 data, 
which are represented in the form of a 3D voxel that 
is represented by binary variables on a 3D voxel grid. 
When each binary tensor points to 1, it means that 
the voxel is inside the mesh surface, and it is outside 
the mesh surface when it points to 0. The size of the 
voxel grid is 64 × 64 × 64, and 989 chairs of Model-
net40 are used (Figure 8) [43]. 

4.2. Hyperparameter of deep learning model

To train the model we tuned the hyperparameters 
as follows: (1) VAE for Generation model was trained 
for 2000 epochs with a batch size of 5, utilizing bi-
nary cross-entropy as the loss function, and using the 
Adam optimizer. Adam, short for Adaptive Moment 
Estimation, stands as a widely used optimization al-
gorithm in machine learning and deep learning for 
enhancing the training of neural networks, (2) For 
3D CNN for Binary Classification model, we used 
learning rate of 1x10-3, warmup the learning rate un-
til 40 epochs, and keep the batch size at 128, lastly 
(3) Evaluation by Autoencoder model was trained for 
200 epochs with a batch size of 5 using rmsprop as the 
optimizer and binary cross entropy as loss function.

Figure 8. Representative chair data of ModelNet40
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4.3. 3D VAE for Generation

We learned by entering the same ModelNet40 
data into the input and output of the 3D VAE model. 
Consequently, P and σ that were located in the latent 
part were trained to represent the manifold wherein 
these data were distributed in an appropriate proba-
bility distribution. Thus, the decoder part of the VAE 
can create unlimited voxel-type chair shapes of vari-
ous 64,64,64 sizes through random variable input. 
From Figure 9, it can be seen that there are mixed 
shapes, with shapes that resemble that of a chair and 
shapes that do not. It is observed that the shapes are 
related to the formal chair shape as well as unusual 
shapes such as wheeled shapes and perforated back 
pants. This confirms that the model has the ability 
to learn various characteristics of the existing chair 
shape and create an imitation.

4.4. 3D CNN For Binary Classification

Several chair shapes created by 3D VAE were 
classified using 3D CNN, which was trained for bi-
nary classification into existing chair shapes. The 3D 
CNN model was trained with ModelNet40 to identify 
the chair shape by answering 0 if the input is not a 
chair or as 1 if the input is a chair. Further, the shapes 
generated in the VAE were input into the model and 

indicated. Figure 10 shows the shapes that are clas-
sified as a 0. They can be seen that most shapes do 

Figure 9. Chair Generated by VAE

Figure 10. Classified as not chair
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not have proper chair shapes. Figure 11 is the collec-
tion of the shapes that are classified as 1. Data with 
relatively intact chair shapes can be observed. Thus, 
although this model can produce indefinitely, it can 
also filter out the results of VAEs that are more likely 
to produce relatively stable data, which enhances the 
defect management process.

4.5. Evaluation by AutoEncoder

A probability distribution was trained using exist-
ing 3D data through 3D VAEs, and similar 3D data 
was generated from the learned probability distribu-
tion. Furthermore, the created data was filtered us-
ing a 3D CNN network, rather than focusing on the 
intended shape.

To determine whether the 3D VAE genuinely 
generated shapes from the learned probability dis-
tribution or simply replicated existing data, an auto-
encoder model was utilized. ModelNet40 data were 
input and output to ensure that the input data was du-
plicated accurately by the autoencoder. Throughout 
this process, the internal weights of the autoencoder 
were optimized for the extraction and recognition of 
features from existing data. Consequently, if input 

data with characteristics different from the existing 
dataset were fed into the autoencoder, it might face 
difficulties in identifying new features, as it was pri-
marily trained on existing shapes. As a result, it might 
not be capable of reproducing the exact shape of the 
input data.

The results of the autoencoder verification are 
presented in Figure 12 (Similar to existing designs) 
and Figure 13 (Different from existing designs). 
Therefore, the evaluation of novelty can be carried 
out by introducing the 3D VAE-generated data into 
the autoencoder trained with existing 3D data and 
comparing it with the restored data.

The different chairs generated are depicted in the 
graph between novelty and cost as shown in Figure 14 
As the shapes of the input data and restored data are 
different from each other, data with different charac-
teristics from the existing data may be evaluated.

The Intersection of Union (IoU) index was used 
to quantify this factor [46]. The formulation is shown 
in Figure 15 The number of voxels from the total 
voxels was determined by dividing the number of 
intersections by the number of voxels occupied by 
the two datasets. The lower the IoU value, the more 
likely it is that the restored data were generated.

Figure 11. Classified as chair
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Figure 12. The results of reconstructed images that are similar to previous designs

Figure 13. The results of reconstructed images that are different to previous designs

Figure 14. Cost and Novelty Graph
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4.6. Collaborative design in virtual reality

Next, the collaborative design of the virtual real-
ity makes the overall Voxel shape as a final concept 
model. More precisely, the final concept model is 
complemented by the conversion of Voxel to STL 
and by the recreation of shapes by design experts. In 
this experiment, the shape that received the highest 
score in Novelty was converted to STL and imported 
into collaborative VR. Each voxel is represented as 
the floating-point number. Thus, we assigned the 
threshold value for cells to transform voxels into a 

form in STL. This value varies from 0.0 to 1.0, and 
the STL form comes out with three threshold val-
ues of 0.1, 0.7 and 0.9. If you enter a number too 
small, the shape output will be a sort of block. In 
this experiment, the first form of the Figure 16 is the 
output with a threshold of 0.1. The collaborative vir-
tual space of Gravity Sketch supports the analysis of 
STL forms from different angles. Several designers 
are able to check out unique parts of virtual reality. 
The new design of the chair had unusual shapes for 
legs, armrests, and corners of the support. The de-
signer recreated a new model of connected volume 
chair with a virtual reality joystick of the voxel shape. 
The bottom right of Figure 16 is the result of the final 
concept step.

5. Discussion

In this study, we proposed a new approach for an 
automatic model to create new designs that are simi-
lar to previous designs. In actual manufacturing sites, 
many parts are automated, and deep learning used in 
most process. However, in the areas that require hu-
man intuition and creativity, such automation is not 
achieved, and thus, it cannot keep up with the ever-
changing product trends and cannot keep up with 

Figure 15. Concept of IoU

Figure 16. Experiment in virtual reality for collaborative design
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the future manufacturing keywords of multi-variety, 
small-volume production. Therefore, we solved this 
problem by through generation for deep learning by 
creating an automated device that mimics human in-
tuition and creativity in design. Existing studies are 
focused on generating 2D images using GAN and 
VAE, and 3D research has been limited to simple 
segmentation with no application purpose. In this 
study, generative deep learning was used in the prod-
uct development process to create an automation 
model that can replace the overall design and design 
parts in actual manufacturing sites. By referring to the 
design of previously sold products, it is possible to 
create new things that have not yet been found in the 
learned probability distribution, while maximizing 
the existing characteristics. It is also possible to create 
new shapes that humans have never thought of. We 
summarize the comparison with different types of de-
sign generation methods in Figure 17.

However, this model is somewhat unstable, and 
unintended shapes may be created. In the actual 
process, this shape, which corresponds to a defect, 
needed to be filtered out manually in the past. How-
ever, it was possible to filter the defect-detection pro-
cess using the 3D CNN deep learning model. The 
model was trained to classify the existing chair shape 
and other shapes, and it was judged whether the gen-
erated shape could be used as a chair. The filtering 
function was performed through the ship after cre-
ation. We expect the VAE to create shapes that are 
not designed by humans.

	However, the VAE sometimes generates shapes 
that look exactly like the existing ones. Therefore, 
to verify the creativity of the shape generated by the 
VAE, a separate autoencoder model is trained and 
verified. The autoencoder model was trained to per-
form the function of restoring the shape of the ex-
isting chair data by inputting the existing chair data 
and using the same chair data. By inputting the shape 
that is generated from the VAE into this model, it is 

judged whether it is restored in the same way as the 
existing chair data, and the similarity with the existing 
chair data is studied. This was quantified using the 
IoU value obtained in an existing 2D segmentation 
vision study. Through the automation of a series of 
design, defect detection, and evaluation processes, 
the focus on automation was extended to processes 
that required human intuition and creativity, thereby 
enhancing production efficiency and preparing for 
the era of small-lot production of multiple products.

6. Conclusion

This study converts rapidly generated customer 
reviews into quantitative numbers which makes it 
possible to determine which shape of the product 
is the most preferred through numerical values. In 
addition, the use of the shape recognition model nu-
merically indicates the types of shapes that are mixed 
along with the proportions, and it was possible to pre-
dict the preferred shape of customers by linking it to 
the review data. However, the limitation of the pro-
posed method is that the back propagation of 3-stage 
learning models is disconnected. The disconnected 
learning leads to slow training and requires for more 
dataset than 1-stage model like GAN model (Gen-
erative Adversarial Network). On the other hand, 
Voxel data is sparse matrix and let 3-dimension neu-
ral network trains very slowly. The future works are 
the integration of all deep learning models to connect 
all back propagation and the pre-processing for re-
ducing the space data of Voxel product data in order 
to apply GAN model. The proposed method has 
3 stage deep learning models and disconnected the 
back-propagation of the models.

In conclusion, the proposed framework for gen-
erative design of 3D chairs represents an innovative 
departure from conventional approaches. By utiliz-
ing a variational autoencoder model based on a 3D 

Figure 17. Comparison with different types of design generation methods
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convolutional neural network, the longstanding re-
search gap in the field has been effectively addressed. 
This approach not only enhances the efficiency and 
automation of 3D product generation but also signifi-
cantly reduces the reliance on human involvement 
and decision-making when compared with estab-
lished methods. Furthermore, the introduction of 
an automated deep learning model to appraise the 
uniqueness of generated designs redefines the stan-
dards for evaluating generative designs.

	The proposed approach extends seamlessly to 
other product categories without limitations. By le-
veraging the existing product-form database, it gen-
erates new shapes through a VAE trained on pre-
existing designs. Furthermore, a 3D CNN model 
is developed to recognize product types, laying the 
groundwork for an automated design system that 
can identify multiple product images in 3D and de-
rive new recommended shapes. This underscores 
the framework's potential for application in various 
product domains by retraining the 3D CNN model 
on new datasets and employing the VAE to generate 
novel designs based on the established product-form 
database, providing a versatile and automated design 
solution for diverse product categories.

Funding

This research was supported by the National 
Research Foundation of Korea (NRF) grant funded 
by the Korea government (MEST) [grant agree-
ment number NRF-2019R1G1A1100471] and by 
the KEIT (Korea Evaluation Institute of Industrial 
Technology) grant funded by the Korea Government 
(MOTIE: Ministry of Trade Industry and Energy). 
[grant agreement number 20016343].  

References
[1]	 S. Weyer, T. Meyer, M. Ohmer, D. Gorecky, and D. 

Zühlke, “Future Modeling and Simulation of CPS-based 
Factories: an Example from the Automotive Industry,” 
IFAC-PapersOnLine, vol. 49, no. 31, pp. 97–102, 2016, 
doi: 10.1016/j.ifacol.2016.12.168.

[2]	 D. Zuehlke, “Smartfactory–from vision to reality in factory 
technologies,” the 17th World Congress The International 
Federation of Automatic Control, vol. 41, no. 2, pp. 14101-
14108, July 2008, Seoul, Korea, doi: 10.3182/20080706-5-
KR-1001.4283.

[3]	 Y. Feng, Y. Zhao, H. Zheng, Z. Li, and J. Tan, “Data-driven 
product design toward intelligent manufacturing: A review,” 
International Journal of Advanced Robotic Systems, vol. 
17, no. 2, 2020, doi: 10.1177/1729881420911257.

[4]	 T. Primo, M. Calabrese, A. Del Prete, and A. Anglani, 
“Additive manufacturing integration with topology 

optimization methodology for innovative product design,” 
The International Journal of Advanced Manufacturing 
Technology, vol. 93, pp. 467-479,  2017, doi: 10.1007/
s00170-017-0112-9.

[5]	 J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, 
“Learning a probabilistic latent space of object shapes 
via 3D generative-adversarial modeling,” Advances in 
neural information processing systems, vol. 29, 2016, doi: 
10.48550/arXiv.1610.07584.

[6]	 C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: 
Deep learning on point sets for 3d classification and 
segmentation,” IEEE conference on computer vision and 
pattern recognition, pp. 652-660, July 2017, Honolulu, 
USA, doi: 10.48550/arXiv.1612.00593.

[7]	 A. X. Chang, et al, “Shapenet: An information-rich 3D 
model repository,” arXiv preprint, 2015, doi: 10.48550/
arXiv.1512.03012.

[8]	 D. Maturana and S. Scherer, "VoxNet: A 3D Convolutional 
Neural Network for real-time object recognition," 2015 
IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS), Hamburg, Germany, 2015, pp. 922-
928, doi: 10.1109/IROS.2015.7353481.

[9]	 D. P. Kingma and M. Welling, “An introduction to 
variational autoencoders,” Foundations and Trends in 
Machine Learning, vol. 12, no. 4, pp. 307-392, 2019, doi: 
10.1561/2200000056.

[10]	 S. Myung and S. Han, “Knowledge-based parametric design 
of mechanical products based on configuration design 
method,” Expert Syst Appl, vol. 21, no. 2, pp. 99–107, 
2001, doi: https://doi.org/10.1016/S0957-4174(01)00030-
6.

[11]	 X. Li, J. Zhao, R. He, Y. Tian, and X. Wei, “Parametric 
design of scalable mechanisms for additive manufacturing,” 
Journal of Mechanical Design, vol. 140, no. 2, p. 022302, 
2018, doi: 10.1115/1.4038300.

[12]	 L. Meng, W. Zhang, D. Quan, G. Shi, L. Tang, Y. Hou, P. 
Breitkopf, J. Zhu, and T. Gao, “From topology optimization 
design to additive manufacturing: Today’s success and 
tomorrow’s roadmap,” Arch Computat Methods Eng, vol. 
27, pp. 805–830, 2020 doi: 10.1007/s11831-019-09331-1.

[13]	 J. Liu, Y. Ma, A. Qureshi, and R. Ahmad, “Light-weight 
shape and topology optimization with hybrid deposition 
path planning for fdm parts,” The Int J Adv Manuf 
Technol, vol. 97, pp. 1123–1135, 2018, doi: 10.1007/
s00170-018-1955-4.

[14]	 J. Wu, X. Qian, and M. Y. Wang, “Advances in generative 
design,” Comput Aided Des, vol. 116, p. 102733, 2019, 
doi: 10.1016/j.cad.2019.102733.

[15]	 C. Wu, Y. Gao, J. Fang, E. Lund, and Q. Li, “Simultaneous 
discrete topology optimization of ply orientation and 
thickness for carbon fiber reinforced plastic-laminated 
structures,” Journal of Mechanical Design, vol. 141, no. 4, 
p. 044501, 2019, doi: 10.1115/1.4042222.

[16]	 S. Oh, Y. Jung, S. Kim, I. Lee, and N. Kang, “Deep 
generative design: Integration of topology optimization 
and generative models,” J Mech Des, vol. 141, no. 11, p. 
111405, 2019, doi: 10.1115/1.4044229.

[17]	 H. Sun and L. Ma, “Generative design by using exploration 
approaches of reinforcement learning in density-based 
structural topology optimization,” Designs, vol. 4, no. 2, p. 
10, 2020, doi: 10.3390/designs4020010.

[18]	 J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. 
Lovegrove, “Deepsdf: Learning continuous signed distance 
functions for shape representation,” in Proceedings of the 
IEEE/CVF conference on computer vision and pattern 
recognition, 2019, pp. 165–174.

[19]	 M. Fey, J. E. Lenssen, F. Weichert, and H. M  ̈uller, 
“Splinecnn: Fast geometric deep learning with continuous 



17Park et al.

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

b-spline kernels,” in Proceedings of the IEEE conference 
on computer vision and pattern recognition, 2018, pp. 
869–877.

[20]	 P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, 
“Learning representations and generative models for 3d 
point clouds,” in International conference on machine 
learning. PMLR, 2018, pp. 40–49.

[21]	 H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, 
“Multi- view convolutional neural networks for 3d shape 
recognition,” in Proceedings of the IEEE international 
conference on computer vision, 2015, pp. 945–953.

[22]	 A. Kanezaki, Y. Matsushita, and Y. Nishida, “Rotationnet: 
Joint object categorization and pose estimation using 
multiviews from unsupervised viewpoints,” in Proceedings 
of the IEEE conference on computer vision and pattern 
recognition, 2018, pp. 5010–5019.

[23]	 D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. 
Behnke, “Registration with the point cloud library: A 
modular framework for aligning in 3-d,” IEEE Robot 
Autom Mag, vol. 22, no. 4, pp. 110–124, 2015, doi: 
10.1109/MRA.2015.2432331.

[24]	 G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and 
B. Hariharan, “Pointflow: 3d point cloud generation with 
continuous normalizing flows,” in Proceedings of the 
IEEE/CVF international conference on computer vision, 
2019, pp. 4541–4550.

[25]	 H. Fan, H. Su, and L. J. Guibas, “A point set generation 
network for 3d object reconstruction from a single image,” 
in Proceedings of the IEEE conference on computer vision 
and pattern recognition, 2017, pp. 605–613.

[26]	 C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, 
“3d-r2n2: A unified approach for single and multi-view 3d 
object reconstruction,” in Computer Vision–ECCV 2016: 
14th European Conference, Amsterdam, The Netherlands, 
October 11-14, 2016, Proceedings, Part VIII 14. Springer, 
2016, pp. 628–644. 

[27]	 R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. 
Gupta, “Learning a predictable and generative vector 
representation for objects,” in Computer Vision–ECCV 
2016: 14th European Conference, Amsterdam, The 
Netherlands, October 11-14, 2016, Proceedings, Part VI 
14. Springer, 2016, pp. 484–499.

[28]	 D. Maturana and S. Scherer, “Voxnet: A 3d convolutional 
neural network for real-time object recognition,” in 2015 
IEEE/RSJ international conference on intelligent robots 
and systems (IROS). IEEE, 2015, pp. 922–928.

[29]	 C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep 
learning on point sets for 3d classification and segmentation,” 
in Proceedings of the IEEE conference on computer vision 
and pattern recognition, 2017, pp. 652–660.

[30]	 C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: 
Deep hierarchical feature learning on point sets in a metric 
space,” Advances in neural information processing systems, 
vol. 30, 2017, doi: 10.48550/arXiv.1706.02413.

[31]	 J. Li, B. M. Chen, and G. H. Lee, “So-net: Self-organizing 
network for point cloud analysis,” in Proceedings of 
the IEEE conference on computer vision and pattern 
recognition, 2018, pp. 9397–9406.

[32]	 K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, 
A. D. Kane, D. K. Menon, D. Rueckert, and B. Glocker, 
“Efficient multi-scale 3d cnn with fully connected 
crf for accurate brain lesion segmentation,” Medical 
image analysis, vol. 36, pp. 61–78, 2017, doi: 10.1016/j.
media.2016.10.004.

[33]	 S. Kumawat and S. Raman, “Lp-3dcnn: Unveiling local 
phase in 3d convolutional neural networks,” in Proceedings 
of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 2019, pp. 4903–4912.

[34]	 D. P. Kingma and M. Welling, “Auto-encoding variational 
bayes,” arXiv preprint arXiv:1312.6114, 2013, doi: 
10.48550/arXiv.1312.6114. 

[35]	 D. Tran, L. Bourdev, R. Fergus, L. Torresani, and 
M. Paluri, “Learning spatiotemporal features with 3d 
convolutional networks,” in Proceedings of the IEEE 
international conference on computer vision, 2015, pp. 
4489–4497. 

[36]	 F. Alam, H. Sang Ko, H. F. Lee, and C. Yuan, “Deep 
Learning Approach for Volume Estimation in Earthmoving 
Operation”, Int J Ind Eng Manag, vol. 14, no. 1, pp. 41–50, 
2023, doi: 10.24867/IJIEM-2023-1-323.

[37]	 B. Yang, H. Wen, S. Wang, R. Clark, A. Markham, and 
N. Trigoni, “3d object reconstruction from a single depth 
view with adversarial learning,” in Proceedings of the IEEE 
international conference on computer vision workshops, 
2017, pp. 679–688. 

[38]	 T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, 
and X. He, “Attngan: Fine-grained text to image generation 
with attentional generative adversarial networks,” in 
Proceedings of the IEEE conference on computer vision 
and pattern recognition, 2018, pp. 1316–1324. 

[39]	 S. Hong, D. Yang, J. Choi, and H. Lee, “Inferring 
semantic layout for hierarchical text-to-image synthesis,” in 
Proceedings of the IEEE conference on computer vision 
and pattern recognition, 2018, pp. 7986–7994. 

[40]	 J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, 
“Learning a probabilistic latent space of object shapes 
via 3d generative- adversarial modeling,” Advances in 
neural information processing systems, vol. 29, 2016, doi: 
10.48550/arXiv.1610.07584. 

[41]	 R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, 
“Pu-gan: a point cloud upsampling adversarial network,” in 
Proceedings of the IEEE/CVF international conference on 
computer vision, 2019, pp. 7203–7212. 

[42]	 S. Jang, S. Li, and Y. Sung, “Generative adversarial network 
for global image-based local image to improve malware 
classification using convolutional neural network,” Applied 
Sciences, vol. 10, no. 21, p. 7585, 2020, doi: 10.3390/
app10217585.

[43]	 Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, 
and J. Xiao, “3D ShapeNets: A deep representation for 
volumetric shapes,” in Proceedings of the IEEE conference 
on computer vision and pattern recognition, 2015, pp. 
1912–1920.

[44]	 S. Rogge, D. Bonatto, J. Sancho, R. Salvador, E. Juarez, 
A. Munteanu, & G. Lafruit, “MPEG-I depth estimation 
reference software,” in IEEE International Conference on 
3D Immersion (IC3D), p. 1-6. December, 2019, Brussels, 
Belgium.

[45]	 C. Wang, M. Cheng, F. Sohel, M. Bennamoun, and 
J. Li, "NormalNet: A voxel-based CNN for 3D object 
classification and retrieval," Neurocomputing, vol. 323, pp. 
139-147, 2019, doi: 10.1016/j.neucom.2018.09.075.

[46]	 Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Data-driven 
3D voxel patterns for object category recognition,” in IEEE 
conference on computer vision and pattern recognition, 
pp. 1903-1911. June, 2015, Boston, MA, USA.


