
International Journal of Industrial Engineering and Management (IJIEM), Vol. 8 No 1, 2017, pp. 1-8
Available online at www.iim.ftn.uns.ac.rs/ijiem_journal.php

ISSN 2217-2661

IJIEM

UDK: 004.41

One Software Solution for Data Transfer Between Cli ent and
Server with Emphasis on Saving Memory and CPU Usage

Munir Šabanovi ć
MSc., University of "Džemal Bijedić", Faculty of Information Technologies in Mostar

Sjeverni Logor br.12 88000 Mostar, BiH, munir.sabanovic@uninp.edu.rs

Muzafer Sara čević
Ph.D., Department of Computer sciences, University of Novi Pazar
Dimitrija Tucovica bb, Novi Pazar, Serbia, muzafers@uninp.edu.rs

Emruš Azizovi ć
Ph.D., Department of Computer sciences, University of Novi Pazar

University of Novi Pazar Dimitrija Tucovica bb, Novi Pazar, Serbia, emrus.azizovic@unhz.eu

Received (19.09.2016.); Revised (14.12.2016.); Accepted (01.03.2017.)

Abstract

The paper analyzes the memory usage and consumption of processor time when the user interacts
with the application. We have analyzed the workload of the processor depending on the number of
loaded data for different technologies of transfer (AMF, JSON or XML) from the server to the client.
Apart from that, we have analyzed the occupation of memory depending on the number of loaded data
and instantiated objects, the percentage of availability of memory that the class instances occupy. The
change in the memory occupation is displayed graphically and numerically.

Key words: client-server communication, data transfer, memory, CPU usage, XML.

1. INTRODUCTION

This paper analyzes the workload of working memory
with Profile as tool, and time engagement of the
processor by using the Task Manager when authoring
application that reads the data from the server
Wampserver2.4-x86 is started. Profile as tool enables
memory availability assessment from multiple angles,
one can see exactly how many instances of individual
classes are active, the percentage of memory instances
of a given class take up in relation to all living instance,
whether the logic for removing references on inactive
objects is activated immediately, gives average
duration of individual methods. The wave form memory
consumption is graphically presented where one can
see the changes of memory dependency during the
user’s interaction with the application, as well as
interaction of the application with the server. All of this
can be traced for the three technologies of data transfer
AMF, JSON and AMF. By carefully monitoring the
process, we can see that the differences between
transfer technologies do not exist when it comes to
processor workload.

2. USED SCIENTIFIC METHODS AND
PROCEDURES

In order to achieve the objectives and tasks of the
research, the following scientific methods and
procedures were used:

• By experimental application we have obtained
results that demonstrate the effectiveness of new
methods (in speed or saving memory space).

• Method of generalization is applied in the analysis of
a number of cases where there is a general
statement that applies to all cases. By the method
specialization specific cases as specific examples
were presented.

• Methods of deduction and induction are used in the
course of the experimental research, where after the
obtained results a conclusion about the new
techniques and possibilities of their application was
formed.

3. TECHNOLOGIES USED FOR MAKING
AUTHORING APPLICATION

In order to create software solutions, Flex technology
was used on the client side, PHP on the server side,
while, for the data transfer were used three
technologies AMF, JSON and XML. To analyze
memory consumption is used Profiler as, while
processor workload was monitored by the Task
Manager. JSON and XML are used in many areas
[6,7,11,12].
Flex is a highly productive, free open source software
environment for creating executable version of
expressive mobile, Web and computer applications.
Flex enables one to create executable version of Web
and mobile applications that share a common basic

2 Šabanović et al.

IJIEM

code, thus shortening the time and cost of creating
applications and long-term maintenance [1]. While Flex
applications can be created using only the free Flex
SDK, Adobe Flash Builder ™ can accelerate
development with features such as intelligent code
editing, gradual debugging, programs to optimize
memory performance and visual design. Flex in its
environment contains two languages .mxml for
visualization and AS3 for functionality [1].
PHP server language is executed on the server side. It
is named a scripting language because it is written in
the form of scripts and was purpose built for use on the
Web [7]. It can be written in separate files, or be
inserted within HTML. The PHP processor on the Web
server is interpreted by the PHP code, and Web server
on the exit emits HTML or other types of data that the
web browser on the client side can understand. A copy
of the HTML page is sent directly from the server to the
client computer, while the PHP code is not sent directly
but is previously translated into a form that the client
computer will know how to interpret. HTML parts in the
script are left as they are until PHP code is not
interpreted and executed with the PHP processor and
the result of execution is sent to the client. PHP code
has great possibilities, from communicating with other
computers, creating images, databases access, work
with the graphics, creating desktop applications using
PHP-GTK extensions all the way to reading and writing
files.
PHP does not have its owner; it is a free language, a
group of enthusiasts gathered and made the PHP. For
AMF technology, they have taken the Action Message
Format and made serializers that correspond to action
message format in PHP.
AMF or Action Message Format is a binary format that
is used for serialization of objects and sending
messages between the client and the remote service.
Action Script 3 language has classes for encoding and
decoding of the AMF format. Adobe Systems has
released AMF binary protocol specification on 13
December 2007., and announced that it will support the
developer community to make this protocol for all major
server platforms. Thus, today there is AMF support for
platforms written in Java, PHP, .NET and other
languages. This paper will focus its attention on the
PHP language because it is the chosen server
platform.JSON or JavaScript Object Notation is a very
simple text format for the exchange of data between
server and client [6.10]. It is easy to parse and
independent from any other programming language.
Parsing of the JSON format can be performed using the
built-in JavaScript functions [11,12]. Compared to XML
format, it is faster, shorter and there are no reserved
words [8.9]. XML, or Extensible Markup Language, is a
language for creating electronic documents. One XML
document is a hierarchy of XML elements. Each
element represents part of the information contained in
the document [2]. The content of the XML document
includes: processing instructions, elements, attributes
and comments.
Adobe Flex profiler can identify bottlenecks and
memory leaks in your application. The user interacts

with the application, the profiler records the state of the
application including the number and size of facilities,
the number of called for methods, archives the time
methods spend from the moment when they were
called for to the moment when they are not active.
Using the profiler, one can see how much time a
method is active, or if the same method was called for
multiple times, one can get the average time for the
methods by profiling section. If it is discovered that the
method causes a performance bottleneck, then the user
can try to optimize the method. This tool enables
following the order of calling for methods and to
determine which method is unnecessarily called for.
Also, the profiler provides information to the user on
how many active instances there are as well as the total
number for each class individually. To avoid multiple
objects of a class to instantiate multiple times
simultaneously, if they are not required, then the class
is defined as a singleton class. If an object takes up a
lot of memory, then there is a possibility of optimizing
memory consumption.
In comparison with the neighboring states of an
application, which is achieved by current recordings,
one can discover that some objects, which are
allocated amount of the memory, are not needed to the
application. To free the memory and thereby eliminate
memory leaks there is a logic which removes any
residual references to a given object. So, when it is
determined that an object which is placed in memory, is
no longer needed, then there is logic that is destructing
the given object. This logic is called garbage collection
or garbage collector.
It is recommended that the profiling is done during the
development of the application in order to determine the
bottleneck in the application which influences the
performance and in order to optimize the code as soon
as possible.
The application is implemented in the object model. The
central position in the object programming occupies the
class or class instance - the object. Classes are defined
as building blocks and interconnections of models being
described. Among the relevant experts from object-
oriented programming there is no agreement when it
comes to regarding the object and therefore generally is
resorted to an empirical definition of the object. In the
opinion of relevant authors (G. Booch), each object is
defined using the identity, state and behavior. Object
identity is something that makes the objects of the
same or different classes differs from one another.
Identity is unique so that two objects in the same
memory space cannot have the same identity even
though they may be located in the same state and to
have the same behavior. The state of the object is
described using specific values of the class member’s
data and is result of the operations that were carried out
on the object in the past and determines the behavior of
the object in the present and the future. For example, in
the stack a reading operation cannot be executed if
there are no elements in the stack but the operation
writing in can be done.
The object behavior is described using operations and
the implementation of the operation is called the

Šabanović et al. 3

IJIEM

"method". Class can have one operation, several or no
operation at all. For example, in the working library with
windows, as is the case with Java’s awt package, all
Rectangle class objects can be moved, can be scaled
or their features can be tested. Usually (but not always),
the call for operation over the object changes its data or
state. The behavior of the object, in response to the
activation of some operations (initiative, message)
depends on three factors:

• the very initiative
• state of the given object
• state of other objects from the same or different

classes which are not objects-members, but
have an impact in the initiative framework.

So it can consult a method or state of a third object.
It is also necessary to note that an object can be active
and passive. If it has installed behavior then it refers to
the active object as opposed to a set that is passive
because there are no methods that are built-in within
the style. Thus the behavior of the object is determined

by the operations, where specific behavioral pattern
depends both on the operation and of the current state.
Activating the operation is performed with the so called
message. Class features i.e., object can be descriptive
and procedural. The Stack class has the descriptive
characteristics of a number of elements of the stack as
well as the elements. Procedural characteristics show
what the stack can do: read, enter, delete, etc.

4. THE APPLICATION DESIGN AND
FUNCTIONALITY

Figure 1. shows the application working environment.
Application working environment contains a grid with
columns Id, First name, Last name, Department, Index
no. and Date, Figure 2. The columns are loaded data
from the database, which is located on the Wampserver
2.4-x86 server. Number of loaded data is selected from
the ComboBox within the range 100-76000 data.

Figure 1. Application working environment

Figure 2. Component DataGrid on the application working environment

The application contains two Bar buttons. The first
stateSelector Bar button contains five states:
Management, Diagrams, Java-PHP, Java-PHP-XML
and Comparation diagram.

This control is defined by code block[3]:
<s:ButtonBar
top="25" left="30"
dataProvider="{statesProvider}"

4 Šabanović et al.

IJIEM

labelField="label"
id="stateSelector"
change="stateSelector_changeHandler(event)"
/>

DataProvider data supplier is a series ofstatesProvider
which is defined by the following code block:
<s:ArrayList id="statesProvider">
<fx:Object label="Managament" state="managament"/>
<fx:Object label="Diagrams" state="diagrams"/>
<fx:Object label="Java-Php" state="javaPhp"/>
<fx:Object label="Java-Php-Xml" state="javaPhpXml"/>
<fx:Object label="Comparation diagram"
state="comparation"/>
</s:ArrayList>

Authoring application loads the data from two different
servers, Wampserver2.4-x86, which works with PHP-
player and Niti server which works with Java. If the
state Management is active then the application
working environment is displayed. However, if the
second state Diagrams is active then graphs for the
three technologies of data transmission are displayed,
AMF, JSON and XML. The state JavaPHP shows
JSON charts when there is communication of the client
authoring application with the server Wampserver2.4-
x86 and Niti server.
If the fourth state JavaPhpXml is active, then graphs
are displayed which measure the time of n data, when
the data on the part of the server is formatted in XML. If
the Comparation diagram button is active, then a
comparison chart of AMF-JSON-XML query execution
is displayed.
The second Bar button selectProxyBar, changes its
appearance depending on the application operating
conditions. The Management state displays three
buttons StudentProxyAmf, StudentProxyJson and
StudentProxyXml. These three buttons offer the choice

of data transfer technology from the database into the
application in AMF, JSON or XML.
Button controls, whose labels are Previous, Next, Edit
student, Delete student, Add student and Filter,
respectively enable display of previous data block from
the database in the grid, the next data block, editing
the selected item in the grid and the base, deleting
rows in the database, adding new-student in the
database and filtering data in the grid. Depending on
the state normal or search in the class instances
StudentControlComponent and
StudentManagerComponent.
The filter control can take two values for label Filter or
Back. TextInput fields and ComboBox serve to display
values from the selected rows of the grid, changes to
the content in the selected row and adding new
content. In the state normal are displayed all the
TextInput controls and ComboBox, while the state
search does not display all TextInput fields.

5. SYSTEM RESOURCES ANALYSIS: PROCESSOR
AND MEMORY

The application analyzes the number of active
instances, the percentage of availability of memory
instances of different classes that exist in the program,
instances that take up a lot of memory, the average
period the methods occupy during all sections of
engagement, period in sections.
Based on these parameters, one can optimize the
code. The chart can trace changes in memory
consumption on the basis of the activities of each
component in the application.
This is achieved by using the Profile as tool which
allows tracking of each application segment, provides
data on the number of instantiated objects, memory
usage, identifies performance within the application.
Field for running Profile as tool, of the Adobe Flesh
Builder located in the Run menu, Figure 3.

When you run the application, the StudentAMF.mxml
class object is instantiated. The sudden jump of
memory occurred in the graph at the moment of

loading 500 objects from the server to the client
application. The whole application is not larger than 20
MB, which can be seen in Figure 4.

Figure 3. Starting the application analyzer from the Run menu.

Šabanović et al. 5

IJIEM

Current memory usage is 13860Kb, as shown
in the field Current Memory: 13860Kb.
Maximum occupied memory for application was
13860Kb, the red line in the graph.

Class StudentVO has 500 active instances
(Figure 5.), and occupies 67.7% instances of
the total number of instantiated objects in
memory of different classes.

In Figure 5., there is a list of classes in application
which have instantiated objects in memory, a package
which includes classes, total number of instantiated
objects for each class, the number of active instances
of each class, size of the memory occupied by objects
of each class expressed in bytes and in percentages
with respect to all instances that have existed, current
memory usage occupied by active objects of a given
class. This table shows that most memory occupies
class instance StudentVO, which amount 500 stored in
the working memory. Graphic components take up a lot
of memory, because the graphics classes are bulky
and therefore it is necessary to reduce the number of

these classes to a minimum so that the total memory
usage would be lesser and when drawing they take up
a lot of processor time.
Pressing the Next button in the application, Figure 1.,
500 new instances are called for from the database.
Now the table shows that the total loaded amount is
1000 objects and that there are1000 active instances.
However, the Profile as logic has prepared 500
instances for destruction, it is waiting for a moment
when they would be destroyed, however, if one
presses the GabrageCollector button, then manually is
run the logic to remove all references on objects that
are no longer used and thus eliminate memory leaks.

Figure 4. Shows the maximum memory usage, red line, current memory usage, the blue line, and change
of the memory consumption over time, showing a memory space occupied by the applications, 20 480 Kb.

Figure 5. Shows a list of all the objects that currently exist in the application.

6 Šabanović et al.

IJIEM

So, when one loads 500 new instances from the
database, memory has increased to 9710Kb and then
dropped to 7079kb because the GarbageCollector
cleaned 500 instances from the memory which are no
longer used. In the table, objects of class StudentVO
occupy 57.97% of the memory, skins for text fields of
the class StudentTextInputSkin occupy 7.67% of the
memory. However, the proxy StudentProxyJson
occupies 0.05% of the memory. These are classes that
do not have heavy objects and therefore take up little
memory. There is one instance of the controller
StudentControlComponent which occupies 0.69% of
the memory. For ButtonBarSkin button in total seven

instance are instantiated, in the memory currently exist
7 occupying 1.37% of the memory.
When one would calculate the memory of all skins,
StudentComboSkin 0.91%, ButtonBarSkinInnerClass1
1.93%, etc., it can be seen that they occupy a lot of
memory.
By clicking the Diagrams button in ButtonBar, Figure
6., there is a jump in memory because another
component is included. If the Java-PHP button is
clicked there is a graphics rebound, which displays
memory usage; the case is the same when involving
other components.
.

Flex does not reduce memory when Diagrams or other
component has a value null, because the virtual
machine evaluates how much memory it consumes
and holds reserved memory. The Garbage collector did
not finish the deletion job because it estimated that
memory will be needed.

When it comes to processor time, the largest amount of
processing time is spent when loading data from the
server to the application. In free mode, processor
usage is small, image 7a.

When the Next button is pressed on the working
application and at the same time are loaded new 500
objects of the StudentVO class, then the processor is
considerably burdened serving the application, as
shown in Figure 7b. Comparing processor employment

in Figures 7a and 7b shows that the load in the second
case is 10% higher.
If the component Diagrams is active, at the same time
data loading period into the application is measured
provided that the iteration is repeated 50 times, then

Figure 7. CPU usage a) in free mode, b) when 500 objects are loaded, class StudentVO, c) when creating

a chart, for any technology transfer AMF, JSON or XML, when the component Diagrams is active.

Figure 6. Shows memory space occupied by the application when the user interacts.

Šabanović et al. 7

IJIEM

the processor time is considerably spent, as can be
seen in Figure 7c.
Testing is performed on computer with the following
performances: CPU - QuadCore AMD Phenom X4
9550, 2200 MHz (11 x 200), L1 64 KB per core, 512KB

L2 per core (On-Die, ECC, Full-Speed), 2 MB L3 (On-
Die, ECC, NB-Speed), RAMMemory - 3 Gb, Graphic
card - nVIDIAGeForce 9400 GT. The environment of
authoring application was used for the test.

6. CONCLUSION

The paper analyzes the memory usage and
consumption of processor time when the user
interacts with the application.
For the analysis of the working memory load the
Profile as tool was used which gives wide scope for
reviewing different aspects of the working memory
workload, gives a clear picture to the author of the
application how to optimize the code and thus
increase the operating speed of the application and
prevent memory leaks.
The conclusion is that there is a rapid increase in
memory consumption when loading data from the
server. Depending on the amount of working
memory on the client's computer one needs to load
the optimal number of data from the database.
During the preparation of the application it is
recommended to use Profile as tool in order to
optimize the time and prevent memory leak. In the
application it is determined that graphic components
take up a lot of memory and processing time, it is
highly recommended to minimize the skin class.
When measuring the mean time, it is necessary to
select the optimal number of iterations so the
processor would not be burdened too much.

7. REFERENCES
[1] Using ADOBE FLEX 4.6. Tutorial from official web site

help.adobe.com/ (visited 19.11.2014.).
[2] Zimmermann O., Tomlinson M., Peuser S.. Perspectives on

web services: applying SOAP, WSDL and UDDI to real-world,
Springer, 2003.

[3] Hall C., ActionScript Developer's Guide toPureMVC, O'Reilly
Media; 1 edition, 2011.

[4] C++ FAQ. Kept by Marshall Cline, retrieved from
www.parashift.com/c++-faq-lite/ (visited 19.11.2014.)

[5] Encryption Basics. EFF Surveillance Self-Defense Project,
Surveillance Self-Defense Project, n.d. Web. 06 Nov. 2013.,
ssd.eff.org/tech/encryption (visited 19.11.2014.)

[6] Florescu D, Fourny G. JSONiq: The History of a Query
Language, IEEE internet computing, 17 (5), 2013, pp. 86-90.

[7] Pettit, JB, Marioni, JC. BioWeb3D: an online webGL 3D data
visualisation tool, BMC bioinformatics, 14 (1), 2013, pp. 185.

[8] Jorstad, I, Bakken, E, Johansen, TA, Performance evaluation of
JSON and XML for data exchange in mobile services, WINSYS
2008: proceedings of the international conference on wireless
information networks and systems, 2008, pp. 237-240.

[9] Rodrigues, C, Afonso, J, Tome, P, Mobile Application
Webservice Performance Analysis: Restful Services with JSON
and XML, enterprise information systems, Communications in
Computer and Information Science, 220 (1), 2011, pp. 162-169.

[10] Adamanskiy A, Denisov A. EJDB - Embedded JSON database
engine, 2013 fourth world congress on software engineering
(WCSE), 2013, pp. 161-164.,

[11] Merelo-Guervos J, Castillo J, Laredo A. et al.. Asynchronous
Distributed Genetic Algorithms with Javascript and JSON,
Conference: IEEE Congress on Evolutionary Computation
Location: Hong Kong, 2008, pp. 1372-1379.

Figure 8. The load data from the server in JSON format, and at the same time processor workload is
measured.

8 Šabanović et al.

IJIEM

[12] Jun Y, Zhishu L, Yanyan M. JSON Based Decentralized SSO
Security Architecture in E-Commerce, International Symposium
on Electronic Commerce and Security Location: Guangzhou,
Proceedings of the international symposium on electronic
commerce and security, 2008, pp. 471-475.

[13] http://www.tricedesigns.com/2011/11/07/AMF-vs-JSON-in-air-
mobile-applications/ (visited 25.11.2014)

[14] http://www.jamesward.com/2007/04/30/ajax-and-flex-data-
loading-benchmarks/ (visited 25.11.2014.)

Softversko rešenje za prenos podataka izme đu klijenta i servera sa
fokusom na racionalno koriš ćenje memorije i procesora

Munir Šabanovi ć, Muzafer Sara čević, Emruš Azizovi ć

Primljen (19.09.2016.); Recenziran (14.12.2016.); Prihvaćen (01.03.2017.)

Apstrakt

U radu je analizirana upotrebu memorije i vremensko angažovanje procesora pri interakciji korisnika sa

aplikacijom. Predmet analize predstavlja opterećenje procesora u zavisnosti od broja opterećenih podataka za

različite tehnologije prenosa (AMF, JSON ili KSML) od servera ka klijentu. Pored toga, analizirana je zauzetost
memorije u zavisnosti od broja obima podataka i instanciranih objekata, procenat dostupnosti memorije u
zavisnosti od klase instance koju zauzima. Promene zauzetosti memorije prikazana je kako grafički tako i
numerički.

Klju čne reči: klijent-server komunikacije, prenos podataka, memorija, korišćenje procesora, XML

