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Abstract 

This article contains results of mathematical modeling of technological processes for manufacture of 
pre-production polymer composite prototypes having certain performance characteristics conducted 
with application of engineering analysis software using artificial neural networks. Based on mechanical 
testing results, the following material strength characteristics mathematical models were defined: 
ultimate strength (at room temperature); modulus of elasticity (at room temperature); compressive 
strength (at room temperature); compressive strength (at Т=150°С); ultimate strength (shear in the 
sheet’s plane); modulus of elasticity (shear in the sheet’s plane); ultimate strength (interlayer shear). 

The first step was to evaluate the statistic importance of outside parameters which influence on 
materials' properties. The main task was to obtain the function of dependence of the mechanical 
properties from the outside factors. 

Key words: technological process, analysis, modelling, control, neural network. 

1. INTRODUCTION 

The basic aim of the conducted works was a multiple-
factor study of technological processes (TP) for 
manufacture of pre-production prototypes made from 
polymer-matrix composite materials (PCM) comprising 
a carbon reinforcement filler and a meltable matrix. The 
problem was stated as a study of TP factors influence 
on the matrix material content, surface density, and 
mechanical properties of the prototypes [1]. The results 
presented in this article were obtained in the frame of 
the program for “Research and development of the 
automated technological process for polymer composite 
products manufacture exemplified by the IL-76MD-90A 
airplane engine nacelle doors” conducted by Voronezh 
Aircraft Production Association (VASO) OJSC. Applied 
scientific research (ASR) is carried out by Voronezh 
State Technical University (VSTU) in accordance with  

 

the federal target program “Research and development 
activities in priority areas of the Russian Federation 
scientific and technological complex for 2014 – 2020”, 
in the field of “Transportation and space systems”. 

2. THE TASK 

Manufacturing technology for prepregs based on 
unidirectional carbon tapes and meltable matrixes is 
schematically presented in Figure 1.  
Manufacturing technology can be conventionally divided 
into several stages: 

- line preparation and auxiliary materials placement; 

- preparation and placement of the main materials: the 
reinforcement filler and the matrix; 

- impregnation process. 
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The prepreg is a unidirectional carbon tape using the 
Formosa 12K carbon filament as a warp yarn and the 
VMPS-8 glass filament as a weft yarn. The tape is 
impregnated with the Т-107 (and/or Т-6815) adhesive 
(meltable) epoxy-based matrix at a given ratio by the 
method of matrix film application to a carbon tape.  
One of the practical objectives of this paper was to 
create the tooling for automated control of carbon tape 

and meltable matrix TP factors providing maximum 
performance characteristics of the manufactured 
materials [2].  
The input data used for solving this task were material 
types and parameters, and operational characteristics 
of processes realized in the considered TP on VASO 
base. 

 

Figure 1. Schematic representation of the tape and auxiliary materials placement 

1 – metering shafts, 2 – lamination shaft, 3 – IR furnace, 4 – matrix material bath, 5 – heating panel, 6 – cooling table, 7 – 
prepreg quality control system QMS-12 MAHLO, 8 – matrix material, 9 – cloth, 10 – paper, 11 – film, Р1-Р7 – unwinders, Н1-Н4 

– winders, К1-К7 – calenders, ● – strain sensors, ○ – auxiliary shafts or rollers 

 

At the experiment planning stage, the following variation 
ranges of the external factors were set: line speed V= 
0,5 ÷ 2 m/min, lamination shaft clearance В2 = 50 ÷ 150 
µm, calibration K = -50 ÷ -20 %. 
The Optimal Space Filling Design experiment was 
planned with application of the DesignXplorer module 
for parametric studies and non-linear optimization 
integrated into the ANSYS Workbench computer 
analysis engineering platform [3].  
Matrix content in prepreg (Н) and surface density (ρ, 
Ro) were used as the quality criteria determined by 
results of experimental studies of hot melt prepreg 
manufacturing technology. 
Figure 2 shows schematic interpretation of the adhesive 
prepreg mechanical testing results obtained in different 
technological conditions taking into account the 
experiment plan. 
Based on mechanical testing results, the following 
material strength characteristics were defined: 

- ultimate strength (at room temperature), SigR1;  

- modulus of elasticity (at room temperature), SigR2; 

- compressive strength (at room temperature), SigS1; 

- compressive strength (at Т=150°С), SigS2;  

- ultimate strength (shear in the sheet’s plane), SigC1; 

- modulus of elasticity (shear in the sheet’s plane), 
SigC2; 

- ultimate strength (interlayer shear), SigC3. 

3. MULTI-FACTOR ANALYSIS 

Multiple factor studies were conducted using the 
STATISTICA engineering system, including a 
mathematical module using neural network technology. 
Neural networks are the universal approximation tool of 
the multivariate nonlinear dependences, capable "to be 
arranged" under the appearing of the new information 
of the researched process, i.e. they can serve as the 
intellectual tool of monitoring which is constantly 
complemented and clarified [4]. Figure 3 presents the 
graphical notation of the computing artificial neural 
network (ANN) structure illustrating the process of intra-
network computations. 
The input signals or the values of input variables are 
distributed and "move" along the connections of the 
corresponding input together with all neurons of the 
hidden layer.  They may be amplified or weakened 
through multiplying by the corresponding coefficient 
(called the weight of connection). The signals arriving to 
one or another of the neurons in the hidden layer are 
summed up and subjected to nonlinear transformation 
by using the so-called function of activation.  
They proceed further to the network outputs that may 
be several in number. In this case the signals are also 
multiplied by a definite weight; it is the sum of the 
weighted values of neuron outputs in the hidden layer 
that represents the result of the neural network 
operation. The artificial neural networks of such a 
structure possess the universal approximating ability, 
i.e., make it possible to approximate the arbitrary 
continuous function with any accuracy desired. 
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Figure 2. The results of TP execution 

 

 

Figure 3. Neural network computing structure 

 

To investigate the ANN approximated capabilities the 
perceptron with the single hidden layer (SLP) has been 
chosen as a basic model which performs nonlinear 
transformation of the input space into the output space 
in accordance with the formula6: 
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Rx – network input vector, made up of the 

values jx ; q – the neuron number of the single hidden 

layer; 
s

Rw – all weights and network thresholds 

vector; ijw – weight entering the model nonlinearly 

between j-m input and i-m neuron of the hidden layer; 

iv – output layer neuron weight corresponding to the i-

neuron of the hidden layer; 0,bbi – thresholds of 

neurons of the hidden layer and output neuron; fσ – 
activation function (in our case the logistic sigmoid is 
used). ANN of this structure already has the universal 
approximation capability, in other words it gives the 
opportunity to approximate the arbitrary analog function 
with any given accuracy.  
The main stage of using ANN for resolving of practical 
issues is the neural network model training, which is the 
process of the network weight iterative adjustment on 
the basis of the learning set (sample) 
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where w – ANN weight vector; 

   2,),( ififQ ww   – ANN quality criterion as per 

the i-training example;     ii yyif  xww ,,  – i-

example error. For training purposes the statistically 
distributed approximation algorithms may be used 
based on the back error propagation or the numerical 
methods of the differentiable function optimization. 
To solve the tasks of ANN training, it is important to 
attain good generalizing properties of the network, i.e. 
its capability to predict the values, which do not belong 
to the training sample. Thus, at the stage of training 
ANN, having a fixed structure, the problem arises in 
evaluating a certain functional of ANN performance, 
which is generally represented as the total quadratic 
error for a specified training sample, and the degree of 
correspondence to some subjective prior information 
about the type of the neuron-network response surface. 
This determines the necessity for regularization of fixed-
structured ANN training. 
 In the absence of the ideal and infinitely large training 
set, the regularization of the training procedure is 
necessary, aimed at averting the network overtraining, 
so as to obtain the correct solution of the problem of the 
fixed-structured ANN synthesis. With sufficient amount 
of experimental data, the problem can be successfully 
solved by cross check, when part of the data is not 
used in the procedure of ANN training, but it serves for 
independent control of the training results.  
When the training algorithm is complemented by 
additional information about the neuron-network 
function properties (i.e. limitation, smoothness and 
monotony), it leads to modification of the goal function, 
and necessitates the minimization of two or more 
training criteria. There is a well-known Bayesian 
approach, based on noisy data interpolation. The 
method of Bayesian regularization consists in the use of 
subjective assumptions about the function being 
investigated, and can be applied both at the stage of 
ANN structural optimization and during training. For 
example, the method is known, in which regularization 
is achieved by representation of the goal function in the 
form of convolution: 

WD EEF    (3) 

where DE  is the total quadratic error, and WE  is the 

sum of the squares of network weights. 

Here, the emphasis is made on the problem of 
specifying the correct values of the goal function 
parameters, α and β, and their selection determines the 
topology of the neuron-network approximating function. 
At the same time, there is a possibility of altering the 
regularization criterion in the formula 3, based on the 
analytical evaluation of the approximating response 

surface curvature. Let us introduce the energy factor, 

which will be presented as 
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computational experiments show that the adequacy of 
neuron network approximation for the available set of 
experimental data will enhance, if the model ensures 
the required energy factor value, besides the accuracy 
in proximity to the available empirical results [5-8].  
Let us present the algorithm of combined back 
propagation (CBP), as part of the concept of fixed-
structured ANN training for obtaining the response 
surfaces of minimal curvature, and for enhancing the 
robust properties of the developed theory for creating 
the ANN of optimal structure. To illustrate the 
computations, let us examine the functioning of the 
SHLP with one terminal.   

Let us select the total quadratic mean error for internal 
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Let us represent the goal functions as complex SHLP 
parametric functions, and calculate all the components 
of their gradients using the formula, specified for 
complex functions. Thus, the network output is 

calculated as    ij

j

j
s fvy xx  , where х is the 

vector of inputs, s is the number of a point in the 

training sample,  хf  is the function of activation, jv  

is the weight of the output neuron,  and  j is the number 
of a neuron in the hidden layer. Let us consider the 
logistic sigmoid function (Fermi’s function) as the 

function of activation:    jj btj
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 . Here jb  

is the threshold of the hidden-layer neuron j, and the 

function  jj bt ,x  has the form of: 

   
i

jiijjj bxwbt ,x , where ijw  is the weight of 

neurons in the hidden layer. Let us write down the 
detailed expression for the summands of the energy 
factor: 
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During the training process, we will correct the ANN 
parameters at each iteration (epoch), in the direction of 
the antigradient of the goal function. Each epoch will 
consist of two stages. At the first stage, steps are taken 

in the direction of  bwv ,,E . The iterations of the 

first stage are achieved for all the points of the training 
sample. The iterations of the second stage are 
performed in the direction of the antigradient of the 

energy factor  bwv ,,K , and, at that, it is easy to 

obtain the analytical expressions for the gradient 
components of the goal function. 
The developed algorithm is the modification of the back 
propagation algorithm, which is essentially the method 
of stochastic approximation.  
The expressions, obtained for the energy factor (4), 

may be used instead of wE  in the convolution (3). In 

this case, the energy factor must be represented by the 

function   22 , 
s

s
NETfK xw , i.e. this will be the 

integral curvature parameter. With large dispersion 
sK  

of the statistic sampling points, the efficiency of the use 
of total curvature as the goal function of training may be 
low, in contrast with using the algorithm of combined 
back propagation, which adjusts network parameters at 
certain experimental data points [9-11].  
The model’s sensitivity to different factors was analyzed 
with the aid of the DesignXplorer module. At the first 
stage, statistical significance of external conditions for 
material properties was estimated with application of 
dispersion analysis based on Pareto chart. It was found 
out that V and В2 factors are the most statistically 
significant for all parameters. The significant 
parameters were then used for building of the response 
surface charts and contour charts with the surface level 
lines marked on them. Typical charts using SigS1 
parameter as an example are shown in Figure 4. 

Pareto Chart of Standardized Effects; Variable: P8 - SigS1

3 factors, 1 Blocks, 14 Runs; MS Residual=21821,28
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Figure 4. Pareto chart for SigS1 

 

Figure 5. Response surface chart for SigS1 
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Fitted Surface; Variable: SigS1
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Figure 6. Surface level lines for SigS1 

 

The main task was to establish dependencies of the 
mechanical properties on the external factors using 
procedures of multidimensional regression based on 

the full quadratic polynomial. Table 1 contains 
determination coefficients of the obtained multiple factor 
regression models. 

Table 1. Determination coefficients of regression models 

Property Sig_R1 Sig_R2  Sig_S1 Sig_S2 Sig_C1 Sig_C2 Sig_C3 

R2 0,786 0,734  0,823 0,767 0,887 0,805 0,983 

 

Multiple regression results provided a base for definition 
of mathematical dependencies that allow prediction of 
the material’s mechanical properties: 

SigR1=1654,689-211,458*V+27,252*B2-137,537*K-
447,135*V^2-
16,722*B2^2+563,955*K^2+425,999*V*B2+ 
413,836*V*K-890,851*B2*K.   (5) 

SigR2=159,7009-18,7264*V+10,6514*B2-5,7387*K-
33,3873*V^2-
4,5060*B2^2+41,9386*K^2+29,3424*V*B2+ 
34,1372*V*K-70,9805*B2*K.   (6) 

SigS1=988,697-302,234*V+308,779*B2-45,646*K-
397,782*V^2-
355,211*B2^2+73,161*K^2+288,604*V*B2-
158,280*V*K-292,151*B2*K.   (7) 

SigS2=408,192-82,866*V+42,877*B2-45,940*K-
128,903*V^2-
143,277*B2^2+141,709*K^2+96,407*V*B2+ 
84,380*V*K-236,965*B2*K.   (8) 

 

SigC1=93,7963-35,8558*V+53,4977*B2-
59,9834*K+6,5937*V^2+ 35,3655*B2^2+55,6043*K^2-
39,5631*V*B2+74,7243*V*K-86,6989*B2*K. (9) 

SigC2=19,96278-0,26587*V+0,16148*B2-2,2236*K-
1,11729*V^2-
,25707*B2^2+1,73786*K^2+0,87253*V*B2+ 
3,85354*V*K-5,44637*B2*K.   (10) 

SigC3=75,6566-21,9163*V+29,3265*B2-22,9902*K-
47,4452*V^2+5,2717*B2^2+4,1305*K^2+27,4317*V*B2
-39,112*V*K+3,6708*B2*K.   (11) 

Practically all dependencies have extremums in the 
considered area of the factor space. 
Then, using the DesignXplorer module, sensitivity 
coefficients at average parameter values were 
calculated (Figure 7). 
It was found out that ρ, H, Sig_R2 and Sig_S1 criteria 
at the average parameter values are sensitive to 
variation of the external conditions V, B2, K; Sig_R1 
and Sig_S2 criteria – to variation of V, B2 parameters. 
Typical results of analysis for the ρ criterion are 
presented in Figure 8. 
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Figure 7. Calculated coefficients of sensitivity at average parameter values 

 

 

Figure 8. Dependencies obtained for the ρ criterion 
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The presence of extremums in the considered area of 
the factor space became a reason for optimization 
studies, including those in multicriteria statement. 
Optimal values of input parameters V, B2 and K were 
defined with the aid of the DesignXplorer module. 

Sig_R1, Sig_R2, Sig_S1 and Sig_S2 characteristics 
were used as the optimized criteria. 
Representative results and some Pareto-optimal points 
of the factor space are shown in Figure 9 (in process of 
optimization, the Screening method was used with 
analysis settings for 10000 points and selection of the 
three best results). 

 

 

 

Figure 9. Results of multicriteria optimization 

4. CONCLUSION 

This paper contains results of the multiple factor study 
and mathematical modeling of technological processes 
for manufacture of pre-production polymer composite 
prototypes having the specified performance 
characteristics. The study and modeling have been 
conducted applying specialized software for parametric 
studies and non-linear optimization using artificial 
neural networks. The algorithm of combined back 
propagation, as part of the concept of fixed-structured 
ANN training for obtaining the response surfaces of 
minimal curvature, and for enhancing the robust 
properties of the developed ANN of optimal structure 
that make it possible to approximate the arbitrary 
continuous function with any determination coefficients 
desired. During the research, we have found which of 
the outside parameters have the largest impact on the 
results of these TP. The mathematical models were 
designed to forecast the results of the TP, which are 
now extremely unpredictable and stochastic. 
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Predviđanje proizvoda od polimernih kompozitnih materijala 
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Abstrakt 

Ovaj članak sadrži rezultate matematičkog modeliranja tehnoloških procesa za proizvodnju 
predproizvodnih polimernih kompozitnih prototipova sa određenim karakteristikama performansi koje 
se sprovode uz primenu softvera inženjerske analize pomoću veštačkih neuronskih mreža. Na osnovu 
rezultata mehaničkih ispitivanja definisani su sledeći matematički modeli karakteristika čvrstoće 
materijala: konačna čvrstoća (na sobnoj temperaturi); modul elastičnosti (na sobnoj temperaturi); 
čvrstoća na pritisak (na sobnoj temperaturi); čvrstoća na pritisak (na Т=150°С); konačna čvrstoća 
(smicanje u ravni ploče); modul elastičnosti (smicanje u ravni ploče); konačna čvrstoća (smicanje 
međusloja). 
Prvi korak je bio da se proceni statistička značajnost spoljašnjih parametara koji utiču na svojstva 
materijala. Glavni zadatak je bio dobijanje funkcije zavisnosti mehaničkih osobina od spoljašnjih 
faktora. 

Ključne reči: technološki proces, analiza, modeliranje, kontrola, neuronska mreža. 

 


