
Application of the extended two-stage network 
DEA model for the biomass-biofuel logistics 
network design   

1. Introduction

Biofuel or bioenergy was considered a possible 
energy basis, gathering much attention again due to 
the unstable gas price, especially after the pandemic. 
Zhang et al. [1] consider the impact of the Ukraine-
Russia war on crude oil prices by saying that the war 
augmented oil price unpredictability and deeply 
changed the movement of crude oil prices. In addi-
tion, the Middle East war also could cause oil price 

shock. The pandemic and these recent wars would 
force us to realize the importance of biofuel produc-
tion again. However, less attention has been given to 
comprehending the Biomass-Biofuel Supply Chain 
(BBSC) and reducing its costs [2].  

 As Pimentel [3] points out, biofuel production has 
been connected to high levels of carbon emissions. 
Pimentel [3] maintains that bioethanol production 
causes environmental degradation and that significant 
water and air pollution issues are linked to bioethanol 
produced by chemical plants, causing harmful effects 
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on air quality. Several reports show that some areas 
producing biofuels in bulk have suffered from air 
pollution, including China and the United States1. 

 Gold and Seuring [4] mention the problems of 
biomass supply chain design and operations and 
challenges for securing competitively-priced biomass 
feedstock supply for biorefineries. They classify those 
problems and tasks into detailed operations: reaping 
and gathering, storage, shipment, and pre-treatment 
methods [4]. Another research insisted that, in re-
cent years, bioenergy supply chain design, operation, 
and management subjects have gained considerable 
attention along with the growing attention to bioen-
ergy sources [5]. Poudel et al. [6] consider a planning 
model for a reliable biofuel supply chain network de-
sign considering linkage disruption risks.  

 Similarly, Maheshwari et al. [7] develop an op-
timization model for the supply chain design that 
combines the risk of link failures to minimize the 
total cost incurred during disruption and the non-
disruption scenarios weighted by their respective oc-
currence risks. Albashabsheh and Stamm [8] have 
recently developed an optimization model to mini-
mize ethanol production costs from lignocellulosic 
biomass. They illustrate a case study considering a 
variety of biomass forms and types and the potential 
for mobile pelleting [8]. Ji and Nananukul [9] sug-
gest an optimization model to meet the electricity 
demand by formulating the optimization model to 
minimize the lowest operating cost for simultaneous-
ly finding appropriate locations for biomass power 
plants, optimal collection and production of biomass 
stocks, and allocation of suppliers. Balaman [10] also 
emphasizes that developing combined frameworks 
for designing efficient and resilient BBSC should be 
one of the central priorities to enhance this topic's 
research. Hong and Mwakalonge [2] consider a sin-
gle-stage biofuel supply chain network and combine 
three single-stage Data Envelopment Analysis (DEA) 
methods to design efficient biofuel logistics network 
schemes. Hong [11] uses the two-stage DEA method 
to consider a two-stage biofuel supply chain network.  

 Cook and Zhu [12] insist that researchers have 
been developing DEA applications for the area 
wherein Decision-Making Units (DMUs) denote net-
work processes. Thus, in the DEA area literature, a 
network DEA is one of the significant flows that con-
trol several sub-stage efficiencies in a complex struc-
ture. DMUs with intermediate measures between 
the stages are considered in most cases. Previous 

research found that the single-stage DEA (SS-DEA) 
model treats a DMU as a 'black box,' neglecting in-
tervening processes [13]. The SS-DEA's underlying 
assumption is that a DMU's performance depends 
on the inputs used and outputs generated. Thus, the 
'black box' approach cannot offer managers specific 
process guidance to improve DMU's efficiency or 
provide insights into the interrelationships among the 
components' inefficiencies. 

 This paper considers two kinds of Two-Stage Net-
work (TSN) DEA models (see Kao [14]). The first 
one is called a regular TSN (R-TSN) DEA, where the 
intermediate measures, outputs from the first stage, 
are the only inputs to the second stage. The second 
model is called the extended TSN (E-TSN) DEA, 
where the second stage has intermediate measures 
and its own inputs. Figure 1 depicts the difference 
between the R-TSN and E-TSN DEA structures. 

 Hong [11] applies the R-TSN DEA for the BBLN 
design problem, whereas this paper proposes the E-
TSN DEA method in a pre-disruption scenario. We 
present a case study using real data from South Caro-
lina to show that the proposed E-TSN DEA meth-
od makes a more accurate, consistent, and robust 
evaluation of various BBLN configurations than the 
R-TSN DEA model. The proposed method would 
provide the top-notch BBLN configurations for deci-
sion-makers to consider implementing them.          

2. Weighted goal programming model

 This paper applies the models of Eksioglu et al. 
[15], Poudel et al. [6], and Hong [11] and considers 
the BBLN consisting of four supply chain points: a 
supply point – farm or harvest site, a storage point – 
storing facility, and a production point - biorefinery, 
and a demand point – blending station. The structure 
of BBLN is depicted in Figure 1 (see Eksioglu et al. 
[15]). The inbound flows to a production point signify 
the collection of biomass stocks, storing them, and 
shipping them. Trucks take the biomass collected 
at each farm site (FS) to a local storage facility (SF). 
The SF stocks smaller loads of biomass collected 
from the FS. An SF is a potential facility to store and 
pre-process/treat biomass to a more valuable density, 
ship it more cost-effectively, and make a better-quality 
biomass feedstock with higher efficiency of converting 
biomass stocks to biofuel. Large-capacity trucks take 
consolidated biomass stocks from SF to a BioReFin-

1 https://www.epa.gov/risk/biofuels-and-environment#:~:text=Biofuel%20production%20and%20use%20has,on%20an%20en-
ergy%20%2Dequivalent%20basis
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ery (BRF) for processing into biofuel. Direct transpor-
tation of biomass from an FS to a BRF is possible, but 
it requires more space for the biomass stocks. Direct 
transportation of biomass requires higher transporta-
tion costs due to the low biomass density and more 
preparation and operations to be processed into 
biofuel. In addition, the conversion rates of biomass 
feedstock shipped from an FS to BRFs are usually 
lower than those shipped from an SF to BRFs. Also, 
as van Dyken et al. [16] emphasize the importance of 
SF, proper operation at SFs would significantly affect 
the quality of produced biofuel, mainly depending on 
the moisture content in the biomass.  

The outbound flows in Figure 2 illustrate that bio-
fuels produced at BRFs are transported to BS, where 
they will be blended with gasoline. Then, the gasoline 
blended with biofuels is distributed to each gas sta-

tion. In these kinds of supply chain networks, finding 
the locations of SFs and BRFs would be the most es-
sential decision because a BRF usually requires sev-
eral million dollars in annualized construction and 
operation costs. 

 The following nomenclature is used to model 
goal programming (see Hong [11]):

Sets:
 F: set of all potential biomass storage facilities 

(SFs), that is, all FSs, indexed by f.  
 G: set of capacities of SF, indexed by g.  
  I: set of biofuel production facilities, BRFs, 

indexed by i.
 J: set of located SFs, indexed by j.
 K: set of blending stations, BSs, indexed by k.  
 L: set of capacities of BRF, indexed by l.

Figure 1. Regular vs. extended two-stage network DEA structure

Figure 2. Schematic of the biofuel supply chain network (adapted from [16])
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 Parameters:
: capacity of lth size of BRF.
: capacity of gth size of SF.

 Dk: demand of biofuels for BSk.
Nb: maximum number of BRFs to be located.
Nc: maximum number of SFs to be located.
Sf : yield of biomass feedstock from FSf.
 βf : conversion rates of regularly shipped 

biomass feedstock to biofuel. 
	γf : conversion rates of biomass feedstock to 

biofuel, which are directly shipped from FSs.  
 δi: maximum number of FSs that ship biomass 

directly to BRFi.

 : amortized annual locating and operating 
cost for a BRFi with the lth size.

: amortized annual locating and operating 
cost for an SFj with the gth size.

, and :  unit shipping cost from 
FSf  to SFj, from FSf to BRFi, from SFj to 
BRFi, and from BRFi to BSk, respectively.  

Decision Variables:

 : binary variable. If a BRF of size l is located at 
site i, it is one; otherwise, it is zero.

: binary variable. If an SF of size g is located at 
site j, it is one; otherwise, it is zero. 

 : binary variable. If biomass collected from FSf 
is shipped to SFj, it is one; otherwise, it is zero.

: binary variable. If FSf ships biomass directly 
to BRFi, it is one; otherwise, it is zero.

 
: binary variable. If SFj is allocated to BRFi,  it 

is one; otherwise, it is zero.
 : fraction of biofuels produced by BRFi, which 

are shipped to BSk. 

Assumptions:

(i) All FSs are potential sites for locating SFs. 
In contrast, a BRF can only be located at the 
designated  BRF location because BRF can-
didate locations should satisfy some realistic 
requirements, such as air pollution and water 
contamination problems. 

(ii) The risk of disruptions affects the operation 
of the two facilities in the inbound flows, SF 
and BRF. The risk of disruptions implies 
that, as Cui et al. [17] define, disrupted facili-
ties may shut down due to major disasters. 

The Total Logistics Cost (TLC) in the WGP 
model consists of the annualized locating and op-
eration cost for SFs and BRFs and the shipping costs 
from FSs to SFs, FSs to BRFs, SFs to BRFs, and 
BRFs to BSs. Let Nc and Nb denote the maximum 

number of SFs and BRFs to be located. The first goal 
of the WGP model is to minimize the TLC

(1)

where

(2)

The second goal is related to minimizing the worst-
case level of service/transportation of the BSCLN sys-
tem, which is equivalent to minimizing the maximum 
demand-weighted coverage distance (MDWCD), 
which is expressed as  

(3)

The third goal is to maximize the expected amount 
of biomass feedstocks (EABF) shipped to  BRFs. 
Now, let  and  denote the risk probability that 
the biomass and biofuel facilities, SFj and BRFi, are 
disrupted, respectively. The EABF is given by 

(4)

The fourth goal is to maximize the expected amount 
of biofuel production (EABP), which is given by 

(5)

Let  and  denote the pollution-free score and 
the population living inside an σ-mile radius of the 
BRFi, respectively. To denote the effect of pollution 
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on the population residing around the biorefineries, 
we define the total pollution-free score (TPFS) for 
the located BRFs as  

(6)

where . The fifth goal is to maximize 
TPFS given in (6)

Let {TLC*, MDWCD*, EABF*, EABP*, TPFS*} 
denote the target values of five performance mea-
sures and the nonnegative deviation variables, 

 and , de-
note the amounts by which each value of the five per-
formance measures deviates from the corresponding 
target value. Then, the following equations show the 
relationships between the deviation variables and the 
target values:

(7)

(8)

(9)

(11)

(10)

Letting  be the weights 
assigned to the five goals, we formulate the BBLN 
design problem as a weighted goal programming 
(WGP) model as follows:

(12)

subject to
Constraints (7)-(11) 

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

where  and  are relative importance weights 
for the overachievement and underachieve-
ment deviation variables, respectively, such that,  

 and   
It is necessary to find the five performance metrics' 
target values first to solve the above WGP model. 
There is no standard procedure for assigning values 
to the weight factors since no procedure can guar-
antee the most desirable solution to a WGP prob-
lem. An iterative procedure using a particular set of 
weights is suggested by Ragsdale [18], who concludes 
that finding the most desirable solution for decision-
makers would require the process to repeat with all 
possible sets of weights. The imminent question is 
how the most desirable solution is selected so deci-
sion-makers are satisfied with the solution. This pa-
per proposes that the TSN DEA models evaluate the 
efficiency of all different BBLN options generated 
by solving the WGP model with various importance 
weights. Selecting the most efficient or productive 
BBLN configuration would eliminate the decision-
maker's subjective or biased assessments. 

3. Regular and extended two-stage 
network models

Liang et al. [19] apply a Constant Returns-to-Scale 
(CRS) two-stage centralized model to maximize Ef-
ficiency Scores (ESs) for the two-stage process where 
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the stages cooperatively determine a set of optimal 
multipliers on the intermediate features. The BBLN 
system in this study aims to determine the three fac-
tors to maximize ESs: the amount of biomass feed-
stocks collected jointly, the locations of two biofuel 
facilities, SFs and BRFs, and the production amount 
of biofuel. The R-TSN DEA model for the BBLN 
system is shown in Figure 3, considering TLC and 
MDWCD as two inputs to Stage 1, EABF as an in-
termediate measure, and EABP and TPFS as two 
outputs. In the CRS R-TSN DEA model, the ESs of 
the two individual stages are obtained using the DEA 
multipliers, {v1, v2, w1, u1, u2} ≥ 0, by the following 
expressions:

(25)

(26)

where  and  are ESs of stages 1 and 2, respec-
tively. In the leader-follower model (see Liang et al. 
[20]),  for stage 1 is obtained from the following 
model: 

(27)

subject to

(28)

(29)

The efficiency model to determine  is obtained, 
utilizing the optimal value of , from the following 
model:

(30)

subject to

(31)

(32)

(33)

(34)

Then, Liang et al. [20] and Kao and Hwang [21] sug-
gesed the two equations for the Overall Efficiency 
Score (OAES) for the two-stage model as follows: 

(35)

and

(36)

where Eq. (35) is called multiplicational OAES, while 
Eq. (36) is called average OAES. 

Note that the R-TSN DEA approach does not 
correctly reflect the network flows since TLC, MD-
WCD, and EABF in (1), (3), and (4) include the in-
puts to Stage 2. Thus, we separate these metrics into 
the inputs for each stage. TLC, MDWCD, and EABF 
are decomposed  into TLC1 and TLC2, MDWCD1 
and MDWCD2, and  EABF1 and EABF2  as follows:

(37)

Figure 3. The regular two-stage network structure for the BBLN system
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(38)

(39)

(40)

(41)

(42)

Then, {TLC1, MDWCD1} and {TLC2, MDWCD2, 
EABF2} become inputs to Stage 1 and Stage 2, re-
spectively, and {EABF1} is the intermediate measure, 
as depicted by Figure 4. Since each stage in Figure 
4 cooperates to accomplish the best performance of 
the BBLN network, a centralized model is applied 
for the E-TSN DEA.   

(43)

(44)

where  and  are efficiency scores of stages 1 
and 2, respectively, for DMUω, and the multipliers 
for each input, intermediate one, and output are {v1, 
v2, w1, Q1, Q2, Q3 u1, u2} ≥ 0. Now, using the con-
ventional DEA model, the overall centralized CE,  

, can be given by:

(45)

subject to

(46)

(47)

Due to the term of   
 in (47), the above model cannot be 

converted into an LP model. Let  be the max-
imum ES of stage 1, then we formulate the following 
LP model for the model in (45)-(47) as follows:

(48)

subject to 

(49)

Figure 4. The extended two-stage network DEA structure for the BBLN system
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(50)

(51)

From (48)-(51), the optimal value of (45) is an esti-
mator , whose maximum value is , for the 
first stage. Now, the OAES for the two-stage model, 

, is a function of  and can be formulated as

(52)

subject to 

Setting  where  is a step 
size and  τ = 0, 1, 2, …, τmax + 1,  τmax ≤  
The optimal global efficiency is  estimated as  

 See Li et al. [22] for the 
computational procedure. Now, we state the formal 
procedure as follows:

Procedure 
Step 1: [Finding efficient DMUs for R-TSN 
DEA Model]

(i) Let G denote the maximum number of ef-
ficient DMUs to compare.  

(ii) Assess all DMUs by solving the LP given in 
(25)-(34).

(iii) Rank all DMUs based on  in (35) or 
 in (36), 

(iv) Stratify DMUs whose rankings are at least 
#G into a set .

Step 2: [Applying E-TSN DEA Model After De-
composing]

(v) For DMUs in , decompose the R-TSN to 
the E-TSN model.

(vi) Setting   τ = 0, 

1, 2, …, τmax + 1,  τmax ≤ , set  

 
(vii) Rank the DMUs in  based on  in 

(v) and compare the ranks generated by Step 1.

4. Case study and observations

We apply the proposed E-TSN-DEA model for 
the case study that Hong [11] studies, following the 
scenario depicted in Figure 5 (see [23]). Figure 5 indi-
cates sixteen (16) counties whose biomass resources 
are classified as 'good' or better. We select these six-
teen counties as the farm sites (FSs). One city from 
each county is selected using a centroid approach, 
and these cities are considered to have storage facility 
(SF) location potential. We choose five (5) potential/
candidate locations for BRFs and ten (10) locations 
for BSs throughout SC, respectively. The possible lo-
cations for BRFs are selected based on easy access 
to I-26, I-20, and I-95, major interstate highways, 
proximity to major FSs, etc. We use Google Maps to 
measure the actual distances among cities represent-
ing FSs, SFs, BRFs, and BSs. Table 1(a) presents the 
hypothetical demands for all BSs. Table 1(b) sum-
marizes the input parameters. Table 1(c) summa-
rizes the minimum, maximum, and average volumes 
of biomass yield at each FS, as shown in Table 5. 
For the case study, we use the average amount of bio-
mass yield. Using major disaster declaration records 
in South Carolina, we calculate the risk probability 
of being disrupted based on the Federal Emergency 
Management Agency (FEMA) database. Table 1(c) 
also lists the risk probabilities for the candidate sites 
for SFs and BRFs.

As Step I says, we solve the model to find the 
target values of five performance measures, TLCmin, 
MDWCDmin, EABFmax, EABPmax, and  TPFSmax. The 
WGP model is solved for multiple values of weight set, 
α, where each  or  changes subject to the con-
straint  
Setting an increment value equal to 0.1 yields a total 
of 1,001 configurations, and we find that some con-
figurations have the same values of five performance 
measures with different values of the weight set, α. 
Thus, this study reduces 1,001 BBLN configurations 
into 306 alternatives.

The R-TSN and E-TSN DEA are applied to com-
pute the OAESs of these 306 consolidated configura-
tions. We select the top 14 configurations ranked by 
the OAESs generated by either TSN DEA method. 
There are 23 configurations ranked in the top 14 

(53)

(55)

(56)

(57)

(54)
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by either method, and Table 2 reports the results. 
We note from Table 2 that, for some configurations, 
there are significant differences in the OAESs and 
the corresponding rankings between these two DEA 
methods. For example, Configuration #247, ranked 
#1 by the E-TSN DEA, is ranked #233 and #230 by 
R-TSN, while Configuration #303, ranked #8 by R-
TSN, is ranked #28 by the E-TSN DEA. Only Con-
figuration #302 is ranked #1 by both methods.    

Now, we apply both TSN DEA methods to these 
23 configurations and report the OAESs, the cor-

responding ranks, R, the expected ranks, E[R], and 
the absolute rank difference (ARD) between  R and 
E[R] in Table 3. The E[R] is grounded on the origi-
nal rank in Table 2, which shows the results with 
all 306 configurations. For example, Configuration 
#272, ranked #23, based on multiplicational OAES,  
and #27, based on average OAES,  by the R-TSN 
method when all 306 configurations are evaluated, is 
expected to be ranked #16 and #18 among the se-
lected 23 configurations. The ARD can measure the 
robustness of generated rankings. It can be observed 

Blending Station Demand (in K gallons)

Spartanburg 200

Summerville 150

Santee 150

Lancaster 200

Aiken 200

Bishopville 200

Greenville 200

Clinton 300

Dillon 200

Manning 250

Table 1(a). Hypothetical demand for blending station (BS) 

Symbol Value

 $120K, $150K, and $200K for g=1, 2, 3.

 $0.7M, $0.8M, and $1M for l=1, 2, 3.

 400K, 800K, 1M tons for g=1,2,3.

 500K, 800K, 1M gallons for l=1, 2, 3.

βf 70%

γf 40%

δi 16

Nb 2

Nc 4

 $0.005/mile/K metric tons 

 $0.01/mile/K metric tons 

 $0.007/mile/K metric tons

 $0.01/mile/K gallons

Table 1(b). Input data used for the case study 

No Harvest Site Minimum Yield 
(K Metric Tons)

Average
(K metric Tons)

Maximum Yield
(K Metric Tons)

Risk
Probability

1 York 150 225 300 0.32

2 Darlington 150 225 300 0.40

3 Greenwood 150 225 300 0.24

4 Lexington 100 175 250 0.44

5 Allendale 100 150 200 0.36

6 Richland 250 400 550 0.44

7 Dorchester 150 225 300 0.36

8 Orangeburg 150 225 300 0.44

9 Hampton 150 225 300 0.28

10 Newberry 250 400 550 0.36

11 Berkeley 150 200 250 0.44

12 Georgetown 250 400 550 0.48

13 Chester 150 225 300 0.28

14 Horry 100 175 250 0.64

15 Florence 150 225 300 0.48

16 Colleton 100 200 300 0.36

Table 1(c). Biomass yield and risk probability 



85Hong

International Journal of Industrial Engineering and Management Vol 16 No 1 (2025)

No Configuration 
# (ω)

Input 1 Intermed. 
Measure Input 2 Output Regular TSN DEA Extended 

TSN DEA

TLC1 MDWCD1 EABF1 TLC2 MDWCD2 EABF2 EABP TPFS R R R

1 246 $1,270 499628 1740 $3,931 50504 256 1320.512 519.2 0.7648 47 0.8786 45 0.7743 14

2 247 $1,530 38596 1935 $4,034 555908 0 1354.304 519.2 0.7196 233 08598 230 1.0000 1

3 252 $1,342 38596 1825 $4,189 536812 171 1346.096 519.2 0.7228 231 0.8573 231 0.9551 5

4 264 $350 54096 730 $5,631 159081 1795 1229.168 519.2 0.6601 241 0.8153 241 0.9971 4

5 270 $420 21492 695 $43,956 101657 1378 1037.728 483.9 0.8281 26 0.9139 25 0.8132 12

6 272 $315 18904 594 $3,962 101657 1405 977.744 483.9 0.8354 23 0.9104 27 0.9010 7

7 279 $373 54096 659 $4,774 101657 1720 1149.44 519.2 0.7780 39 0.8886 35 0.8461 9

8 281 $808 32212 879 $3,344 297894 894 973.152 498 0.8646 5 0.9310 3 0.6145 49

9 282 $804 32212 972 $3,380 282094 834 1014 498 0.8654 3 0.9310 5 0.6807 32

10 283 $704 32212 706 $3,486 227838 1202 974.832 498 0.8570 10 0.9259 12 0.5254 92

11 290 $808 32212 879 $3,344 297894 894 973.152 498 0.8646 5 0.9310 4 0.6145 49

12 291 $709 25506 994 $3,379 206308 789 1011.064 483.9 0.8655 2 0.9307 6 0.8332 10

13 292 $754 32212 777 $3,417 254526 1090 980.208 498 0.8619 9 0.9284 9 0.5611 78

14 295 $530 27004 766 $3,626 163233 1189 1012.024 483.9 0.8515 13 0.9241 13 0.7124 25

15 298 $597 19244 869 $3,425 235480 811 933.008 483.9 0.8647 4 0.9323 2 0.9212 6

16 299 $536 19244 748 $3,496 178740 1045 941.432 483.9 0.8641 7 0.9296 7 0.8308 11

17 300 $410 18904 594 $3,656 159747 1301 936.424 483.9 0.8560 12 0.9260 11 0.7562 19

18 301 $315 18904 594 $3,962 101657 1405 977.744 483.9 0.8313 25 09129 26 0.9010 7

19 302 $586 19244 942 $3,463 206308 789 975.224 483.9 0.8670 1 0.9327 1 1.0000 1

20 303 $659 25506 799 $3,412 178740 1045 977.272 483.9 0.8626 8 0.9288 8 0.6947 28

21 304 $353 18904 738 $3,763 163233 1189 991.864 483.9 0.8560 11 0.9262 10 1.0000 1

22 305 $344 18904 551 $3,756 140834 1397 944.248 483.9 0.8504 14 0.9240 14 0.7643 18

23 306 $330 19490 546 $3,828 125954.3 1405 944.312 483.9 0.8410 19 0.9187 19 0.7931 13

Note. R: Rank

Table 2. Efficiency results for the top-14 BBLN schemes by either method with 306 configurations under evaluation 

Figure 5. EPA traced sites in South Carolina with biorefinery facility siting potential
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that the multiplicational OAES,  generated by 
R-TSN and the centralized OAES,  by E-
TSN generate perfectly robust ranks, while the aver-
age OAES, , by R-TSN, exhibits seven cases of 
nonzero ARDs. E-TSN DEA still generates the same 
three top-ranked configurations. 

For further investigation, we select the top five 
DMUs by either method and present the results in 
Table 4. Table 4 demonstrates the robustness of rank-
ings, with all zero ARDs generated by the proposed 
R-TSN DEA. We summarize each method's total, 
mean, and maximum ARDs in Table 5. The E-TSN 
DEA does not depend as much on the DMUs under 
evaluation as the R-TSN DEA, implying that the pro-
posed method, analyzing the BBLN model closer to 
the actual flow of input and output measures, gener-
ates more robust ranks than the R-TSN method.     

Figure 6 depicts the optimal locations of two bio-
fuel facilities, their allocations, and assignments of 
BRFs to BSs for the three configurations, Configu-
ration #302, #304, and #247, which are ranked as 

#1 by each method. A yellow arrow line indicates a 
shipment from an SF to a BRF,  a solid green arrow 
indicates a direct shipment from an FS to a BRF, and 
a black solid arrow line a shipment of biomass from 
an FS to an SF. In contrast, a black dotted arrow line 
indicates a biofuel shipment from a BRF to a BS. 

For example, Configuration #302 selects {Chester, 
Allendale, Orangeburg} as the optimal locations of SFs 
and {Lake City, Prosperity} as the optimal locations of 
BRFs. The allocation scheme in Configuration #302 
indicates: The farm sites (FSs), {York, Chester}, ship 
biomass to SF {Chester}, FSs {Allendale, Hampton} 
ship to SF {Allendale}, FSs { Dorchester, Colleton} 
ship to SF {Orangeburg}. All other FSs directly ship 
biomass stocks to BRF {Lake City} or {Prosperity}. 
SFs {Allendale, Orangeburg, Chester} ship the treated 
biomass feedstock to BRF {Prosperity}. The BRF 
{Lake City} ships produced biofuels to BSs {Sum-
merville, Dillon, Manning}, and the BRF {Prosperity} 
ships to BSs {Bishopville, Clinton, Santee, Spartan-
burg, Lancaster, Aiken, Greenville}. 

No Configuration 
# (ω)

Regular TSN DEA Regular TSN DEA

R E[R] ARD R E[R] ARD R E[R] ARD

1 246 0.7777 20 20 0 0.8853 20 20 0 0.7743 14 14 0

2 247 0.7318 22 22 0 0.8659 21 21 0 1.0000 1 1 0

3 252 0.7350 21 21 0 0.8636 22 22 0 0.9551 5 5 0

4 264 0.6658 23 23 0 0.8191 23 23 0 0.9971 4 4 0

5 270 0.8293 18 18 0 0.9147 17 16 1 0.8132 12 12 0

6 272 0.8375 16 16 0 0.9177 16 18 2 0.9010 7 7 0

7 279 0.7810 19 19 0 0.8905 19 19 0 0.8462 9 9 0

8 281 0.8789 5 5 0 0.9383 4 3 1 0.6145 20 20 0

9 282 0.8799 3 3 0 0.9385 3 5 2 0.6807 19 19 0

10 283 0.8712 10 10 0 0.9337 12 12 0 0.5254 23 23 0

11 290 0.8789 5 5 0 0.9383 4 4 0 0.6145 20 20 0

12 291 0.8800 2 2 0 0.9383 6 6 0 0.8332 10 10 0

13 292 0.8762 9 9 0 0.9361 9 9 0 0.5611 22 22 0

14 295 0.8658 13 13 0 0.9323 14 13 1 0.7124 17 17 0

15 298 0.8791 4 4 0 0.9396 2 2 0 0.9212 6 6 0

16 299 0.8786 7 7 0 0.9373 7 7 0 0.8308 11 11 0

17 300 0.8703 12 12 0 0.9341 11 11 0 0.7562 16 16 0

18 301 0.8332 17 17 0 0.9140 18 17 1 0.9010 7 7 0

19 302 0.8815 1 1 0 0.9397 1 1 0 1.0000 1 1 0

20 303 0.8771 8 8 0 0.9367 8 8 0 0.6947 18 18 0

21 304 0.8703 11 11 0 0.9343 10 10 0 1.0000 1 1 0

22 305 0.8646 14 14 0 0.9323 13 14 1 0.7643 15 15 0

23 306 0.8535 15 15 0 0.9260 15 15 0 0.7931 13 13 0

Note. R: Rank

Table 3. Comparison of efficiency results when the top 20 configurations are rated 
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 The location and allocation of Configuration 
#304 are similar to those of Configuration #302 with 
the same locations of BRFs {Lake City, Prosperity}. 
Rather than SF {Orangeburg}, Configuration #304 
selects {Berkeley} as an SF. Consequently, FSs {Col-
leton, Dorchester} ship biomass stocks to SF {Berke-
ley}. Then, SF {Berkeley} ships the treated biomass 
feedstock to BRF {Lake City}. Note that, with Con-
figuration #304, BRF {Prosperity} covers 26% of the 
demand for BS {Bishopville}, while BRF {Lake City} 
covers 74% of the demand of {Bishopville}. 

 Note that the two top-ranked BBLN schemes se-
lect {Lake City, Prosperity} as the optimal locations for 

two BRFs. In contrast, Configuration #247 finds a dif-
ferent BRF site {Ridgeland} located in the deep south 
in South Carolina rather than {Lake City}. The last 
configuration in Figure 6 shows that the inputs, TLC1, 
TLC2, MDWCD1, and MDWCD2, are much higher 
than the other top configurations, Configuration #302 
and 304. However, it can produce much higher out-
puts, such as EABP and TPFS (See Table 2).

 We notice that the proposed E-TSN DEA meth-
od would reveal some efficient options in the BBLN 
configurations, such as Configurations #304 and 
#247. If only R-TSN DEA is applied, those efficient 
configurations identified by the proposed method 

No Configuration 
# (ω)

Regular TSN DEA Regular TSN DEA

R E[R] ARD R E[R] ARD R E[R] ARD

1 247 0.7426 10 9 1 0.8713 9 8 1 1.0000 1 1 0

2 252 0.7459 9 8 1 0.8692 10 9 2 0.9551 5 5 0

3 264 0.7477 8 10 2 0.8738 8 10 2 0.9971 4 4 0

4 281 0.8919 5 5 0 0.9450 5 3 2 0.6145 9 9 0

5 282 0.8929 3 3 0 0.9452 3 5 2 0.6807 8 8 0

6 290 0.8919 5 5 0 0.9450 5 4 1 0.6145 9 9 0

7 291 0.8931 2 2 0 0.9451 4 6 2 0.8332 7 7 0

8 298 0.8922 4 4 0 0.9461 2 2 0 0.9212 6 6 0

9 302 0.8946 1 1 0 0.9464 1 1 0 1.0000 1 1 0

10 304 0.8832 7 7 0 0.9416 7 7 0 1.0000 1 1 0

Note. ARD: Absolute Rank Difference =|R -E[R]|

Table 4. Comparison of efficiency results when the top-5 configurations are rated 

ARD
Regular TSN DEA Extended TSN DEA

Total ARD 4 12 0

Mean ARD 0.4 1.2 0.0

Maximum ARD 2 2 0

Table 5. Summary of rank differences for the top-five DMUs 

Figure 6. The three most efficient BBLN schemes by R-TSN and E-TSN DEA methods
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could be excluded from the candidates for the deci-
sion-makers to consider. As shown in the case study, 
the E-TSN DEA would help decision-makers con-
sider the differences among these top three network 
configurations before making a final decision.    

5. Computational experience

 We implement the E-TSN DEA model in an 
Excel spreadsheet with VBA (Visual Basic for Ap-
plications) on Intel® Xeon ® Gold 5122 HP Z4 
Workstation PC (2 processors) with 32GB of RAM 
installed using a 64-bit version of Windows 10. We 
solve the model using the Excel Analytical Solver 
Platform using the 'Gurobi' Solver Engine2, setting ∆ε 
= 0.001 and τmax = 9.  A DEA software, DEAFron-
tier, using an Excel spreadsheet, is run for the R-TSN 
DEA model on the same computer to compare the 
running times. The results for each # of BBLN con-
figuratons considered in the case study are listed in 
Table 6. Solving the E-TSN DEA takes more time in 
terms of running times since it requires τ (= τmax+1) 
iterations to find the optimal global efficiency,   
in (52).  To increase the precision of computations, 
∆ε should reduce.  Then, the reduced ∆ε would in-
crease the running times.  

6. Conclusions

Rather than a single objective of cost minimization 
considered by the conventional supply chain network 
models, this paper focuses on five (5) performance 
metrics at the same time for designing more efficient 
and balanced BBLNs under the risk of disruptions. 
Those five performance metrics are the total logistics 
cost (TLC), the maximum demand-weighted cover-
age distance (MDWCD), the expected amount of 
biomass feedstocks (EABF), the expected amount of 
biofuel production (EABP), and the total pollution-
free score  (TPFS). We propose transforming the 
BBLN network evaluation and design problem into 
an extended two-stage network DEA (E-TSN DEA) 

rather than a regular TSN (R-TSN) DEA. In fact, the 
proposed model represents the actual BBLN sys-
tems in terms of performance measures better than 
the R-TSN DEA model that many researchers have 
applied to evaluate the supply chain systems. 

The proposed procedure aims to identify efficient 
BBLN configurations based on the robust rankings 
of various supply chain network schemes. The case 
study demonstrates that the proposed E-TSN DEA 
approach produces more consistent and robust rank-
ings, whereas R-TSN rankings are not as consistent or 
robust as the proposed method. The efficiency rank-
ings generated by E-TSN DEA are not affected by the 
network schemes under evaluation, while the rank-
ings by conventional R-TSN are significantly affected.    

 Another contribution of this study is that the pro-
posed E-TSN DEA could reveal possibly hidden 
BBLN configurations as efficient schemes, so the R-
TSN method would not rank as high as the proposed 
E-TSN method. As discussed before, Table 2 shows 
several cases, let alone the top-ranked Configuration 
#247 by R-TSN. For example, the #4 ranked Config-
uration #264, ranked #241 out of 306 configurations 
by R-TSN, produces the highest intermediate mea-
sure, EABF, and two very high outputs, EABP and 
TPFS. If the R-TSN method is applied only, Con-
figuration #264 would be excluded for the decision-
makers to consider as the final BBLN scheme to be 
implemented.

 The case study suggests that the proposed ap-
proach should be used as an essential tool, along 
with the traditional R-TSN DEA, for decision-mak-
ers to find the top-efficient BBLN configurations. 
Future research would be necessary and exciting if 
the proposed E-TSN DEA is applied extensively in 
real-world applications to design various supply chain 
network systems. 
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