
Optimal maintenance of deteriorating equipment 
using semi-Markov decision processes and 
linear programming

1. Introduction

Many articles have appeared dealing with the 
study of systems in which the management of their 
equipment is a major concern. Equipment is a tech-
nological object, which is a part of the process of a 
system. This could be, for example, a motor grader 
in the construction process of a project by a construc-

tion company or a machine which assembles vehicle 
parts in an automotive industry. The complete repair 
or maintenance of system equipment is crucial to the 
system’s performance quality. During the previous 
decades, maintenance was considered an appropriate 
action that may be chosen after an equipment failure. 
Nowadays, maintenance is established as a crucial 
element in asset management. Organizations can en-
hance their functionality and reliability by planning 

This paper considers a mathematical model analysing the deterioration of system equip-
ment and available maintenance options. Under specific conditions on costs and transition 
probabilities of the model, the issue of ideal maintenance of the equipment by assuming that 
preventive maintenance, condition-based maintenance, and the replacement times of the 
equipment follow known continuous probability distributions is explored. A semi-Markov 
decision process formulation is provided for this model and computational analysis is pos-
sible by applying well-known Markov decision algorithms. A linear programming approach is 
also presented with appropriate constraints established for the equipment's maintenance and 
repair times. Various numerical results are also presented for the validation of the model. 
The motivation for this paper is to develop a realistic framework for determining decisions 
about the type of maintenance, possible replacement, or the continuation of operation of de-
teriorating equipment. The above decisions are taken within a framework of time constraints 
for equipment maintenance and replacement. Such limitations in the implementation of 
these actions are very crucial for all maintenance management systems. The purpose of this 
paper is to make the described model a useful tool for maintenance managers who plan and 
implement optimal maintenance policies within an environment of variable time constraints.
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maintenance. So, the maintenance of systems equip-
ment influences the overall system efficiency. Mainly, 
in literature, various general types of maintenance 
philosophies can be identified, namely, among oth-
ers, preventive, corrective, condition-based, and risk-
based. The first type is to preventively maintain the 
equipment to a better working condition than the one 
the equipment has at a specific time epoch. This kind 
of maintenance is called Preventive Maintenance 
(PM) of the equipment. The second type is to com-
pletely replace (or completely repair) the equipment 
when this system component fails to operate at all. 
This kind of maintenance is called Replacement (R) 
or Corrective Maintenance (CM) of the equipment. 
Condition-Based Maintenance (CBM) is considered 
as a more advanced alternative to PM. Risk-Based 
Maintenance (RBM) philosophy provides a tool for 
maintenance scheduling and decision-making aimed 
at reducing the possibility of equipment failure.

The Markov decision process is an appropriate 
mathematical tool that is frequently used to analyze 
the deterioration of an operating device. The general 
approach is as follows: A system (e.g., simple ma-
chine or production line) that deteriorates over time, 
is monitored by a possible inspector who may choose 
an action from a set of alternative actions (e.g., pre-
ventive maintenance, repair, continuation of opera-
tion). One’s objective is to find an optimal decision 
policy to minimize a predefined function of the total 
expected cost of the system. Possible techniques for 
determining the optimal policy are usually related to 
the method of dynamic programming and its stan-
dard or modified algorithms. 

In many such models, it can be shown that the 
optimal policy initiates a kind of equipment mainte-
nance if the level of its deterioration exceeds a critical 
level. Such a policy is called a control-limit policy, 
and the critical level is called the control-limit. Some 
articles on research and results in this area with the 
application of Markov decision models are reported.

Tijms and Duyn Schouten [1] presented a Mar-
kov decision algorithm operating on the category of 
control-limit policies for deteriorating equipment. 
Under a cost structure, they determined an optimal 
schedule for equipment management. Makis and Jar-
dine [2] considered a replacement model with gener-
al repair which brings the equipment to a better state. 
They formulated a semi-Markov decision model in 
which the equipment failure is the decision epoch. A 
two-dimensional infinite state space was considered, 
where the state consists of the number of failures and 
the age of the system. Love et al. [3] reformulated 
the previous model with a finite-state semi-Markov 

decision model, by truncating the state space and by 
discretizing the second state variable of the system 
age. They developed an algorithm that creates a se-
quence of control-limit policies to determine the op-
timal replacement policy. Dimitrakos and Kyriakidis 
[4] improved this algorithm by applying Tijms’s [5] 
embedding technique. This technique reduces the 
calculations of the algorithm which have been aug-
mented significantly due to the discretization of the 
system age variable. They developed an efficient pol-
icy iteration algorithm that generates a sequence of 
control-limit policies intending to find the optimal re-
placement strategy. Vanneste and Duyn Schouten [6] 
formulated a finite-state Markov decision model for 
ideal maintenance in a flow line with a buffer in the 
middle. They proved that, for each buffer level, the 
optimal policy is of a control-limit type. Kyriakidis 
and Dimitrakos [7] provided a generalized infinite-
state Markov decision formulation for this model. 
They proved the existence of the optimal policy and 
that it is of a control-limit type. Chen and Trivedi [8] 
presented an approach to optimizing the fixed inspec-
tion rate maintenance policy using a semi-Markov 
decision process. The model exports the best com-
binations of inspection rate and maintenance policy. 
Lugtigheid et al. [9] presented an equipment replace-
ment decision model. They developed a continuous-
time Markov decision process in which the aim was 
to define a policy that minimizes the total cost. The 
system component can be replaced at any point or 
may be repaired at failure or may be preventively 
maintained. Tomasevicz and Asgarpoor [10] for-
mulated a Markov decision model to find the main-
tenance strategy for repairable power equipment. 
Their approach determines if maintenance should 
be implemented for the equipment and what kind of 
maintenance, among preventive maintenance, minor 
maintenance, and major maintenance should be ad-
opted in each deterioration state. Pavitsos and Kyria-
kidis [11] considered a system with an input genera-
tor, an intermediate buffer, and a production unit. 
The production unit deteriorates over time and the 
issue of its optimal maintenance strategy was studied. 
They proved that for a fixed buffer size if the repair 
times are geometrically distributed, then the optimal 
policy is control-limit type. Manatos et al. [12] for-
mulated a repairable production system in which PM 
is performed to improve the system’s reliability and 
performance. They determined the optimal inspec-
tion times and the optimal maintenance strategies to 
optimize the system’s measures. Liu et al. [13] de-
veloped a maintenance policy for systems involving 
aging and cumulative damage. The second feature 
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was modeled by a degradation process, and two cases 
were considered. The two cases are determined by 
whether the distribution parameters of this process 
are known or not. Liu et al. [14] proposed a mainte-
nance strategy for a degrading system with aging and 
state-dependent operating costs. They developed a 
model to investigate the optimal replacement policy 
and they extended this to a model in which imperfect 
repair restores the system to its operating condition. 
Liu et al. [15] presented a maintenance strategy for 
a multi-component system involving hidden failures. 
These failures can be observed at system inspection. 
The aim was to establish the optimal inspection in-
tervals for each component to minimize the long-run 
cost rate. Si et al. [16] developed a covariate-depen-
dent trend renewal process model to formulate the 
heterogeneous failure process of multiple systems 
by utilizing a semi-Markov decision process and pro-
posed a two-state covariate-dependent optimal main-
tenance schedule for these systems. Guo and Gu [17] 
analyzed the joint decision-making of production 
and maintenance strategies in mixed-model assem-
bly systems. They formulated this model as a Mar-
kov decision process that minimizes the average cost 
and Monte Carlo simulation was applied to estimate 
the system’s performance measures under the opti-
mal policy. Wang and Miao [18] studied a reliability 
problem for the optimal maintenance of balanced 
systems. They formulated a semi-Markov preventive 
maintenance optimization model for a balanced sys-
tem with n identical units, where each unit involved 
degradation failure and sojourn times following the 
Erlang distribution with different parameters for dif-
ferent function zones.  Yang et al. [19] formulated 
a finite-horizon Markov decision process for the 
maintenance of single-machine scheduling problems, 
where the processing times of jobs are based on their 
position in the production sequence. Their aim was 
the optimization of the machine make-span. The ef-
fectiveness of their approach was demonstrated by 
computational experiments.  

Another approach to maintenance scheduling is 
through the application of heuristic and meta-heu-
ristic algorithms. Such approaches are presented in 
the papers of Rastgar et al. [20], Nahas et al. [21], 

and Sharifi and Taghipour [22]. Other maintenance 
management techniques such as Analytic Hierarchy 
Process and Causal Tree Analysis are presented in 
the papers of Lopes et al. [23], and Murad et al. [24].

2. Paper contribution and research 
objectives

In most research efforts approached with Mar-
kov decision processes, the actions in each deterio-
ration state usually involve only one type of mainte-
nance. The other actions are usually replacements 
or repairs that bring the equipment back to working 
condition as Good as New. However, maintenance 
managers usually must choose between two, differ-
ent cost and different impact, maintenances that do 
not necessarily bring the system to the state as Good 
as New. The proposed model in this paper aims to 
fill this research gap by incorporating two mainte-
nances actions with realistic and applicable manner, 
that both can bring the system to every state of lower 
degree deterioration, have different costs, and differ-
ent transitions probabilities to these states. Another 
issue that has not been sufficiently studied in the lit-
erature is the study of systems with the addition of 
constraints on maintenance and repair times. This 
condition is very common in maintenance systems. 
Many times, maintenance is required by various fac-
tors to be completed within specific time limits. The 
contribution of this paper in this research gap is the 
solution of the model using linear programming. 
This method allows the introduction of constraints 
on maintenance and replacement times, and modi-
fies the optimal policy and cost based on these con-
straints.

The proposed model (Table 1) can be consid-
ered as a combination of the models Chen-Trivedi 
[8] and Kyriakidis-Dimitrakos [7]. The follow-
ing table lists the main characteristics of the semi-
Markovian approximation of Chen-Trivedi. In this 
model, we incorporate the cost structure conditions 
of Kyriakidis-Dimitrakos [7] model, and the charac-
teristics related to the research gap that the present 
work seeks to approach.

Year:  Authors: States of device: Actions:  Solving Methods:  

2005 Chen, Trivedi {0,1,…,k+1} •  0: no action is taken 
•  1:  minimal maintenance  
•  2: major maintenance (as good as new) 

Value iteration algorithm

Table 1. A brief summary of Chen-Trivedi model



84 Kechagias et al.

International Journal of Industrial Engineering and Management Vol 15 No 1 (2024)

The present paper is mainly concerned with a 
semi-Markov decision process (SMDP) formulation 
to analyze the deterioration process and available 
maintenance strategy of system equipment. The cost 
structure of the model incorporates operating, pre-
ventive maintenance, replacement, and condition-
based maintenance costs and it is assumed that all 
these costs are based on the working condition of the 
equipment. The contribution of this paper regarding 
the investigation of the optimal maintenance strategy 
problem of system equipment is the following. Un-
der a specific cost structure and reasonable assump-
tions on the transition probabilities of equipment, its 
stochastic deterioration process is modeled using a 
SMDP. Various numerical examples provide strong 
evidence that the optimal policy is of a threshold 
type, and it is characterized by two critical numbers. 
A linear programming formulation approach is also 
provided for the model to solve the problem under 
appropriate constraints that can be established for the 
maintenance and repair times of the equipment. To 
our knowledge, there is no other application in the 
literature to solve the expected discounted cost prob-
lem for a semi-Markov decision process using lin-
ear programming. A comparison between our basic 
model and a simplified model that has the possibility 
only for preventive maintenance and equipment re-
placement only in a specific degree of its deteriora-
tion, which is the most common practice in schedul-
ing system equipment maintenance, is presented.  

The rest of the paper is organized in the follow-
ing way. The description of the model and its for-
mulation is provided in Section 3. In Section 4, the 
dynamic programming algorithms for determining 
the optimal policy are given. In Section 5, a linear 
programming formulation is also presented with ap-
propriate constraints established for the equipment's 

maintenance and replacement times. In Section 6, 
numerical results are presented for the described 
model. In Section 7, a comparison between the mod-
el and a simplified one which is used more in reality 
is given. Finally, Section 8, provides conclusions and 
direction for future research based on the limitations 
of the present model.

3. Description of problem and 
conditions

For the description of the model in this section, a 
summary of its parameter notations is given in Table 2.

A system’s equipment that deteriorates over time 
is considered. It may be assumed that the equipment 
could be a component that is critical for the func-
tionality of a processing machine that belongs to a 
production line. It is supposed that i, i∈{0,…,m,m+1} 
represents the working condition of the equipment, 
where the equipment is found to be into one of m+2 
working conditions 0,1,…,m+1, which describes the 
increasing degree of equipment deterioration. State 0 
denotes new equipment or an old one that functions 
as well as new, whereas state m+1 denotes failed or 
non-operative equipment. The states 1,2,…,m are 
operative. It is assumed that, leaving the equipment 
to operate, it deteriorates as time evolves. The state 
space of the system is expressed as: 

S={0,…,m,m+1}

Equipment is observed at discrete equidistant 
time epochs and an action must be made at each ep-
och. The equipment can also be maintained, and a 
decision must be made at the end of each mainte-
nance. The system can replace the equipment if its 
deterioration degree is equal to or exceeds a specific 

S                          State space.                              

w State from which the equipment can be replaced.

pij (a) Probability transition from state i to state j when action a is chosen. 

ci Operating cost until the next time epoch.

CPM Intermediate preventive maintenance cost.

cPM (i) Preventive maintenance cost rate.

CCBM Intermediate condition-based maintenance cost.

cCBM (i) Condition-based maintenance cost rate.

CR Intermediate replacement cost.

cR (i) Replacement cost rate.

mPM Expected time for preventive maintenance.

mCBM Expected time for condition-based maintenance.
mR Expected time for replacement of the equipment.

Table 2. Notation of model parameters
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value w. There are four alternative actions. Action 
0 (leave the equipment to operate), Action 1A (start 
preventive maintenance of the equipment), Action 
1B (start condition-based maintenance of the equip-
ment), and Action 2 (replace the equipment). At state 
0 the only possible action is action 0 and at state m+1 
the action 2. At states i, w ≤ i ≤ m actions 0,2,1A and 
1B are possible. At states i, 1 ≤ i ≤ w-1, actions 0,1A 
and 1B are possible. 

If the equipment is at state i, 1 ≤ i ≤ m, and action 
0 of leaving the equipment to operate is chosen, then 
at the next time epoch, the equipment may be found 
to be at any state j ≥ i, with probability pij(0). It is as-
sumed that for each i, pij(0) > pi,j+1(0), i ≤ j ≤ m+1. 
If the equipment is at state i, 1 ≤ i ≤ m, and action 1A 
of PM is chosen, then at the next time epoch, the 
equipment may be found to be at any state j with 
probability pij(1A). It is also assumed that for each i, 
pij(1A) > pi,j-1(1A), 0 ≤ j ≤ i-1. If at state i, 1 ≤ i ≤ m 
action 1B of condition-based maintenance is chosen, 
then at the next time epoch, the equipment may be 
found to be at any state j with probability pij(1B). It is 
supposed that for each i, pij(1B) < pi,j-1(1B), 0 ≤ j ≤ 
i-1. Preventive and condition-based maintenance of 
the equipment cannot be disrupted and redirect the 
equipment to any «better» condition j, where j∈{0,1,…, 
i-1}. It is further assumed that, if the equipment is 
considered to be at condition i and action 1A is cho-
sen, then given that the next working condition is j, the 
preventive maintenance time, until the transition from 
i to j occurs, is a continuous random variable with 
known probability distribution .  Respectively, 
if the equipment is at working condition i and action 
1B is chosen, then given that the next working condi-
tion is j, the condition-based maintenance time, until 
the transition from i to j occurs, is a continuous ran-
dom variable with known probability distribution 

. It is further assumed that, if the equipment 
is considered to be at state  i, w ≤ i ≤ m+1,  and ac-
tion 2 is chosen, then given that the next state is 0, the 
replacement time until the transition from i to 0 oc-
curs is a continuous random variable with known 
probability distribution . If the action of re-
placement is chosen, then the equipment is replaced 
by an entirely new one.

If the equipment considered to be at state i, 0 ≤ 
i ≤ m and action 0 of leaving the equipment to op-
erate is chosen, then an operating cost equal to ci is 
incurred until the next time epoch. If the equipment 
considered to be at state i, 1 ≤ i ≤ m and action 1A of 
preventive maintenance is chosen, then an intermedi-
ate preventive maintenance cost is incurred which is 
equal to CPM and a preventive maintenance cost rate 

cPM(i) is imposed until the next transition occurs. If 
the equipment is at state i, 1 ≤ i ≤ m and action 1B 
of condition-based maintenance of the equipment is 
chosen, then an intermediate condition-based main-
tenance cost is incurred which is equal to CCBM and a 
condition-based maintenance cost rate cCBM(i) is im-
posed until the next transition occurs. If the equip-
ment considered to be at states i, w ≤ i ≤ m+1 and 
action 2 of replacement is chosen, an intermediate 
replacement cost is incurred which is equal to CR and 
a replacement cost rate equal to cR(i) is imposed un-
til the next transition occurs. Let also mPM, mCBM, and 
mR be the expected time for preventive maintenance, 
condition-based maintenance, and a replacement of 
the equipment, respectively. The following reason-
able conditions on the cost structure and the transi-
tion probabilities of the model may be imposed.

Condition 1: For working condition i = 1,…,m, it 
is assumed that: cPM(i) ≤ cPM(i+1) and cCBM(i) ≤ 
cCBM(i+1). That is, as the equipment deteriorates, 
the preventive maintenance and the condition-based 
maintenance cost rate increase. 

Condition 2: For working condition i of the equip-
ment, the preventive maintenance cost rate is smaller 
than its condition-based maintenance and its replace-
ment cost rate, i.e., it is assumed that: cPM(i) ≤ cCBM(i) 
≤ cR(i). 

Condition 3: Regarding the expected times it is as-
sumed that: mPM < mCBM < mR.

Condition 4: For each condition i of the equipment, 
its intermediate replacement cost is greater than its 
intermediate condition-based maintenance cost and 
its intermediate preventive maintenance cost, i.e., it 
is assumed that: CPM < CCBM < CR. 

Condition 5: For each condition i=0,…,m, it is as-
sumed that: ci ≤ ci+1 i.e., as equipment deteriorates, 
the operating cost increases. 

Condition 6: It is assumed that:

 

Let 

and
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be functions related to transitions probabilities  pij(a).

Condition 7: 
•  For action a=0 and for a fixed k=0,1,…,m, it is 

assumed that:

•  For action a=1A and for a fixed k=0,1,…,m-1, 
it is assumed that:

•  For action a=1B and for a fixed k=0,1,…,m-1, 
it is assumed that:

The function  indicates 
that if the system has a degree of deterioration i, and 

, it is more likely to move to degrees of deterio-
ration close to a degree i compared to , if the system 
continues to operate. Furthermore, the monotonicity 
of pij(0) indicates that it is more probably to move to 
state j rather than to state j+1. According to the defi-
nition of  if the system has a de-
gree of deterioration i, and , it is more likely to 
move to lower degrees of deterioration close to a de-
gree i compared to  if the action of preventive main-
tenance is chosen for the system. The monotonicity 
pij(1A) indicate that it is more likely to move to state 
j rather than to state j-1. According to the definition 
of  if the system has a degree of 
deterioration i and , it is more likely to move to 
lower degrees of deterioration close to a degree i 
compared to , if the condition-based maintenance 

action is chosen for the system. The monotonicity of 
pij(1B) indicate that it is more likely to move to state 
j-1 rather than to state j.  

Condition 7 is an Increasing Failure Rate (IFR) 
assumption which it may be shown to be equivalent 
to the following one: For actions a∈{0,1A,1B} and 
for any function h(j) which is non-decreasing (or 
non-increasing) in j, the function   is 
also non-decreasing (or non-increasing) in i.

Figure 1 and Table 3 summarize the main fea-
tures of the model.

4. Mathematical models for 
determining the optimal policy

Let  be the expected discounted cost until 
the transition to the next state if the present state of 
the process is state i∈S, the discounted factor is equal 
to α>0 and action a∈{0,1A,1B,2} is chosen. For 
each action a∈{0,1A,1B,2} and for each state i∈S:

(1)

(2)

(3)

(4)

Figure 1. State-action graph of the proposed model

Action in State i:  Transition probability: Costs:

0: Leave the equipment to operate pij(0),  j ≥ i ci

1A: Start preventive maintenance pij(1A),  j < i CPM, cPM(i)

1B: Start condition-based maintenance pij(1B),  j < i CCBM, cCBM(i)

2: Replace the equipment pi0(2)  CR, cR(i)

Table 3. A brief summary of the proposed model
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(5)

The minimum total expected discounted costs 
Vα(i,n), i∈S, n=1,2,… with n periods left to the time 
horizon, when the current state is i, satisfy the follow-
ing equations for each n=1,2,…:

(6)

(7)

(8)

(9)

where,

(10)

(11)

(12)

and

(14)

A computational solution of the problem is pos-
sible by applying well-known algorithms in SMDP 
models. The description of the value-iteration algo-
rithm and the description of the policy-iteration al-
gorithm in steps, are presented below. Note that the 
value-iteration algorithm, in most cases, may be pro-
grammed easily. These algorithms find an optimal 
stationary policy and an approximation to the value 
of the minimum total expected discounted cost. A 
possible practical example of the proposed model 
could be the case of a car service. The interim ser-
vice can be considered as a preventive maintenance 
action, whereas the full service can be considered as 
a condition-based maintenance action. The car can 
be completely replaced not necessarily because it is 

non-operative at all, but also when the degree of its 
deterioration exceeds a specific value.

Value-iteration algorithm:
Step 0. Choose Vα(i,0), i∈S, specify ε>0 and set n:=1.

Step 1. For each state i∈S, compute the value func-
tion Vα (i,n) from the following recursive relation:

and determine  as the stationary policy whose 
actions minimize the right-hand side of the above 
equation for all states i∈S.

Step 2. The algorithm is stopped with policy , 
when 

where α ∈ (0,1) is the discounted factor and ε > 0 is 
a pre-specified tolerance number. For example, 
ε=10-4. The minimum total expected discounted 
cost is approximated by the quantity 

 Other-
wise, move to Step 3.

Step 3. Set n:=n+1 and go to Step 1. 

Policy-iteration algorithm:
Step 0. Choose an arbitrary initial trial policy R1. Set 
n:=1.
Iteration n:

Step 1. For each state i∈S, and for action a∈Rn, solve 
the system of  S equations:

with unknown values Vα (i,n), i∈S.

Step 2. Using the values Vα (i,n), find a new poli-
cy Rn+1, by choosing Rn+1(i)=ai, for each state i∈S, 
where ai, is the decision that minimizes the quantity    

So, for each state i∈S determine the action ai that:

Step 3. If for the new policy Rn+1, holds  Rn+1=Rn, 
then the algorithm is stopped with policy Rn+1. Oth-
erwise, set n:=n+1 and go to Step 1. 
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Although it seems difficult to analytically prove 
the form of the optimal policy, extensive numerical 
results indicate that the optimal policy is of a thresh-
old type. The following conjecture concerning the 
form of the model optimal policy can be given.

Conjecture for the form of  the optimal policy: There 
are two critical values i* and i**, such that the opti-
mal policy prescribes the action of doing nothing for 
working equipment conditions i smaller than i*, i.e. 
for conditions i such that i<i*, prescribes the action 
of a type of equipment maintenance (preventive or 
condition-based maintenance), if the working equip-
ment condition i is greater than or equal to i* and 
smaller than i** i.e. for conditions i such that i*≤i<i**, 
and prescribes the action of equipment replacement 
if its working condition i is greater than or equal to i**, 
i.e. for conditions i such that i≥i**.      

5. A linear programming formulation

A linear programming formulation is used in this 
section to solve the minimum total expected discount 
cost problem. The basic advantage of such a method 
is the possibility of introducing constraints into cer-
tain system parameters which is very common in real-
life models. For example, in a maintenance problem, 
constraints may be placed on the fraction of time the 
system is in repair or a type of maintenance. Accord-
ing to the approach of Puterman [25], the following 
formulation can be utilized to solve the total expected 
discounted cost problem for a semi-Markov decision 
process:

(15)
subject to:

(16)
where,                                                        

  

The parameters  bj>0 must satisfy the condi-
tion ∑iϵSbi=1, and they can be chosen arbitrarily. 
Their choice affects the optimal value of z, not the 
resulting optimal policy. If they are chosen such that 
bj=P{X0=j}, then the variable yia can be interpreted 
as the expected discounted time of being in state i 
and making decision a, and z can be interpreted as 
the corresponding expected total discounted cost. 
So, linear programming formulation for the model 
can be given as follows:

subject to:

In Example 3 of the following section, the linear 
programming formulation of the model is numeri-
cally implemented. 

6. Numerical results

Three numerical examples are presented in this 
part. In Example 1, it is assumed that the preventive 
maintenance, the condition-based maintenance, and 
the replacement equipment times are exponentially 
distributed, and in Example 2, it is assumed that they 
follow the Gamma distribution, respectively. In Ex-
ample 3, a linear programming implementation for 
the model is also presented. 

Example 1 Suppose that: 

𝑚=10, 𝐶𝑃𝑀=4, 𝐶𝐶𝐵𝑀=4.2, 𝐶𝑅=5, 𝑐𝑅(𝑖)=1.2,
𝑤≤𝑖≤𝑚+1, 𝑐𝑖=1.5(𝑖+1), 0≤𝑖≤𝑚,

𝑐𝑃𝑀(𝑖)=0.09(𝑖+1), 1≤𝑖≤𝑚,
𝑐𝐶𝐵𝑀(𝑖)=0.1(𝑖+1), 1≤𝑖≤𝑚, 𝛼=0.4, 𝜀=0.01, 𝑤=7.

The transition probabilities are assumed to be given 
by: 

and 

It is also supposed that preventive maintenance, 
condition-based maintenance and equipment re-
placement times are exponentially distributed with 
means mPM=0.833, mCBM=1 and mR=1.666, re-
spectively. In the following matrices, transition prob-
abilities pij(0), pij(1A), pij(1B) and the numerical 
implementation of the functions Dk , Lk and Tk are 
presented. 
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On Table 5, note that if the system is in  i=3 and 
chooses preventive maintenance, it is more likely to 
go to state 2, then to state 1 and with less probability 
to state 0. On the contrary, on Table 6, note that if 

the system is in i=3 and chooses the condition-based 
maintenance action, then it is more likely to go to 
state 0, then to state 1, and less likely to state 2.

     

  pij (0)     0   1   2   3  4   5   6   7   8   9  10  11

0 0.153 0.141 0.128 0.115 0.102 0.089 0.076 0.064 0.051 0.038 0.025 0.012

1 0 0.166 0.151 0.136 0.121 0.106 0.090 0.075 0.060 0.045 0.030 0.015

2 0 0 0.181 0.163 0.145 0.127 0.109 0.090 0.072 0.054 0.036 0.018

3 0 0   0   0.2 0.177 0.155 0.133 0.111 0.088 0.066 0.044 0.022

4 0 0   0   0 0.222 0.194 0.166 0.138 0.111 0.083 0.055 0.027

5 0 0   0   0   0 0.250 0.214 0.178 0.142 0.107 0.071 0.035

6 0 0   0   0   0   0 0.285 0.283 0.190 0.142 0.095 0.047

7 0 0   0   0   0   0   0 0.333 0.266 0.200 0.133 0.066

8 0 0.   0   0   0   0   0   0 0.400 0.300 0.200 0.100

9 0 0   0   0   0   0   0   0   0 0.500 0.333 0.166

10 0 0   0   0   0   0   0   0   0   0 0.666 0.333

11 0 0   0   0   0   0   0   0   0   0   0   0

Table 4. Transition probability matrix pij (0)  

  pij (1A)     0   1   2   3  4   5   6   7   8   9  10    11

0   0   0   0   0   0   0   0   0   0   0   0   0

1 1.000   0   0   0   0   0   0   0   0   0   0   0

2 0.333 0.666   0   0   0   0   0   0   0   0   0   0

3 0.166 0.333 0.500   0   0   0   0   0   0   0   0   0

4 0.100 0.200 0.300 0.400   0   0   0   0   0   0   0   0

5 0.066 0.133 0.200 0.266 0.033   0   0   0   0   0   0   0

6 0.047 0.095 0.142 0.190 0.238 0.285   0   0   0   0   0   0

7 0.035 0.071 0.107 0.142 0.178 0.214 0.250   0   0   0   0   0

8 0.027 0.055 0.083 0.111 0.138 0.166 0.194 0.222   0   0   0   0

9 0.022 0.044 0.066 0.088 0.111 0.133 0.155 0.177 0.200   0   0   0

10 0.018 0.036 0.054 0.072 0.090 0.109 0.127 0.145 0.163 0.181   0   0

11   0   0   0   0   0   0   0   0   0   0   0   0

Table 5. Transition probability matrix pij (1A)  

  pij (1B)     0   1   2   3  4   5   6   7   8   9  10    11

0   0   0   0   0   0   0   0   0   0   0   0   0

1 1.000   0   0   0   0   0   0   0   0   0   0   0

2 0.666 0.333   0   0   0   0   0   0   0   0   0   0

3 0.500 0.333 0.166   0   0   0   0   0   0   0   0   0

4 0.400 0.300 0.200 0.100   0   0   0   0   0   0   0   0

5 0.333 0.266 0.200 0.133 0.066   0   0   0   0   0   0   0

6 0.285 0.238 0.190 0.142 0.095 0.047   0   0   0   0   0   0

7 0.250 0.214 0.178 0.142 0.107 0.071 0.035   0   0   0   0   0

8 0.222 0.194 0.166 0.138 0.111 0.083 0.055 0.027   0   0   0   0

9 0.200 0.177 0.155 0.133 0.111 0.088 0.066 0.044 0.022   0   0   0

10 0.181 0.163 0.145 0.127 0.109 0.090 0.072 0.054 0.036 0.018   0   0

11   0   0   0   0   0   0   0   0   0   0   0   0

Table 6. Transition probability matrix pij (1B)  
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In Table 7, according to the values of the function 
D, if the system is in state =3 the cumulative prob-
ability (0.3333) of going to state 7 up to state 11 is 
smaller than being in state i=4 and going to the same 
states (0.4165). According to the function L, if the 
system is in state i=7, the cumulative probability of 
going to state 0 up to state 2 (0.2142) is greater than 
being in =8 and going to the same states (0.1667). 
Similar conclusions related to the function L are also 
observed for function T in Table 8.

In the next table, the form of optimal policy is 
presented. The value-iteration algorithm gave the 
ε-optimal policy after 15 iterations. In states 0,1 and 
2, the system continues its operation without any in-
tervention. The condition-based maintenance of the 
equipment is selected for the system in states 3 up to 
6, and in states 7 up to 10 the system returns to state 
0 by replacing the equipment. The structure of pij(a) 
and the values of ci, cPM(i), cCBM(i), cR(i), CPM, CCBM 
ensure this behavior of the system.

Dk(i) i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10
k=0 1 1 1 1 1 1 1 1 1 1 1

k=1 0.846 1 1 1 1 1 1 1 1 1 1

k=2 0.705 0.833 1 1 1 1 1 1 1 1 1

k=3 0.577 0.682 0.818 1 1 1 1 1 1 1 1

k=4 0.461 0.545 0.654 0.800 1 1 1 1 1 1 1

k=5 0.359 0.424 0.509 0.622 0.777 1 1 1 1 1 1

k=6 0.269 0.318 0.381 0.466 0.583 0.750 1 1 1 1 1

k=7 0.192 0.227 0.272 0.333 0.416 0.535 0.714 1 1 1 1

k=8 0.128 0.151 0.181 0.222 0.277 0.357 0.476 0.666 1 1 1

k=9 0.076 0.091 0.109 0.133 0.166 0.214 0.285 0.400 0.600 1 1

k=10 0.038 0.045 0.054 0.066 0.083 0.107 0.142 0.200 0.300 0.500 1

k=11 0.012 0.015 0.018 0.022 0.027 0.035 0.047 0.066 0.100 0.166 0.333

Table 7. The functions Dk and Lk

Lk(i) i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10
k=0 1 0.333 0.166 0.100 0.066 0.047 0.035 0.027 0.022 0.018

k=1 1 1 0.5 0.3 0.2 0.142 0.107 0.083 0.066 0.054

k=2 1 1 1 0.6 0.4 0.285 0.214 0.166 0.133 0.109

k=3 1 1 1 1 0.666 0.476 0.357 0.277 0.222 0.181

k=4 1 1 1 1 1 0.714 0.535 0.416 0.333 0.272

k=5 1 1 1 1 1 1 0.75 0.583 0.466 0.381

k=6 1 1 1 1 1 1 1 0.777 0.622 0.509

k=7 1 1 1 1 1 1 1 1 0.8 0.654

k=8 1 1 1 1 1 1 1 1 1 0.818

k=9 1 1 1 1 1 1 1 1 1 1

Tk(i) i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10
k=0 1 0.666 0.500 0.400 0.333 0.285 0.250 0.222 0.200 0.181

k=1 1 1 0.833 0.700 0.600 0.523 0.464 0.416 0.377 0.345

k=2 1 1 1 0.900 0.800 0.714 0.642 0.583 0.533 0.490

k=3 1 1 1 1 0.933 0.857 0.785 0.722 0.666 0.618

k=4 1 1 1 1 1 0.952 0.892 0.833 0.777 0.727

k=5 1 1 1 1 1 1 0.964 0.916 0.866 0.818

k=6 1 1 1 1 1 1 1 0.972 0.933 0.890

k=7 1 1 1 1 1 1 1 1 0.977 0.945

k=8 1 1 1 1 1 1 1 1 1 0.981

k=9 1 1 1 1 1 1 1 1 1 1

Table 8. The function Tk
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According to the conjecture concerning the form 
of the optimal policy, from the above table, the two 
critical values i* and i** of the optimal policy are equal 
to i*=3 and i**=7, respectively. Many numerical ex-
amples provide strong indication that optimal policy 
is of a threshold type. For the data of Example 1, and 
m=100, w=75 the optimal policy is characterized 
by the critical values i*=2 and  i**=76. Ιn the follow-
ing tables, the optimal policy is modified for a vari-
ety of variables. In Table 10, the optimal policy for 
different values of CPM and minimum total expected 
discounted cost for each policy is presented. For low 
values of CPM, the action of preventive maintenance is 
selected for the system in most states. As the value of 
CPM increases, preventive maintenance becomes un-
profitable, and the system selects the action of condi-
tion-based maintenance and the action of equipment 
replacement where it is possible, due to low replace-
ment costs.

In Table 11, the optimal policy for different val-
ues of ci and the corresponding values g for each 
policy is presented.

As it can be seen from Table 11, as ci  increases, the 
system chooses less and less the action of leaving the 
equipment to operate and chooses condition-based 
maintenance and the action of equipment replace-
ment. There is interested in the value ci=2.5(i+1), 
1≤i≤m, where, in state 1 the system selects preven-
tive maintenance. This is reasonable because both 
maintenance actions lead the system to state 0, so the 
one with the lowest cost is selected. In Table 12, the 
form of optimal policy for different values of CR and 
the corresponding values g of the minimum total ex-
pected discounted cost for each policy is presented.

According to Table 12 above, the increment of 
CR leads the system to the choice of condition-based 
maintenance action instead of the action of equip-
ment replacement.

State    0   1   2   3   4   5   6   7   8   9   10  11

Action    0   0   0   1B  1B  1B   1B   2  2   2   2  2

Table 9. Optimal policy form

State  0 1 2 3 4 5 6 7 8 9 10 11

CPM=2.0  0 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 2 g=3.88
CPM=2.5  0 1A 1A 1A 1A 1A 1A 1A 2 2 2 2 g=4.28
CPM=3.0  0 0 1A 1A 1A 1A 1B 2 2 2 2 2 g=4.55
CPM=3.5  0 0 1A 1B 1B 1B 1B 2 2 2 2 2 g=4.62
CPM=4.0  0 0 0 1B 1B 1B 1B 2 2 2 2 2 g=4.64

Table 10. Optimal policy as CPM varies and the corresponding values of g

State 0 1 2 3 4 5 6 7 8 9 10 11

ci=0.5(i+1) 0 0 0 0 0 0 0 0 0 2 2 2 g=2.38
ci=1.0(i+1) 0 0 0 0  1B  1B  1B 2 2 2 2 2 g=3.70
ci=1.5(i+1) 0 0 0 1B  1B  1B  1B 2 2 2 2 2 g=4.64
ci=2.0(i+1) 0 0 1B 1B  1B  1B  1B 2 2 2 2 2 g=5.45
ci=2.5(i+1) 0  1A 1B 1B  1B  1B  1B 2 2 2 2 2 g=6.21

Table 11. Optimal policy as ci varies and the corresponding values of g

State 0 1 2 3 4 5 6 7 8 9 10 11

CR=5.0 0 0 0  1B  1B  1B  1B  2  2  2  2  2 g=4.64
CR=5.5 0 0 0  1B  1B  1B  1B  2  2  2  2  2 g=4.70
CR=6.0 0 0 0  1B  1B  1B  1B  1B  2  2  2  2 g=4.76
CR=6.5 0 0 0  1B  1B  1B  1B  1B  1B  1B  2  2 g=4.78
CR=7.0 0 0 0  1B  1B  1B  1B  1B  1B  1B  1B  2 g=4.80

Table 12. Optimal policy as CR varies and the corresponding values of g
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Example 2 Suppose that:
 m=10, CPM=4, CCBM=4.2, CR=5, cR(i)=1.2, 

w≤i≤m+1, ci=1.5(i+1), 0≤i≤m, 
cPM(i)=0.09(i+1), 1≤i≤m, cCBM(i)=0.1(i+1), 

1≤i≤m, α=0.4, ε=0.01, w=7. 
The transition probabilities are given as in Example 
1. It is also assumed that the preventive maintenance, 
the condition-based maintenance, and the equip-
ment replacement times follow the Gamma distribu-
tion with shape parameters equal to  
and scale parameters equal to  respec-
tively. It is assumed that the shape parameters are: 
a1=2, =2  and a2=3 and the scale parameters are: 
b1=0.42, =0.5  and b2=0.55, respectively. Then,  
mPM=0.84, mCBM=1 and mR=1.65. In the next table, 
the optimal policy is presented. Note that is sustained 
the same as in Example 1.

In Tables 14, 15 and 16 the form of optimal policy 
for different values of CPM, ci and CR respectively and 
the corresponding values of g for each policy is pre-

sented. The evolution of optimal policy and the chang-
es into the values of g are similar as in Example 1.

In the following example, the linear programming 
formulation of the model is numerically implement-
ed. Appropriate constraints are introduced, and the 
minimum cost is estimated under these constraints.

Example 3 Suppose that: 
m=10, CPM=4, CCBM=4.2, CR=5, cR(i)=1.2, 

w≤i≤m+1, ci=1.5(i+1), 0≤i≤m, 
cPM(i)=0.09(i+1), 1≤i≤m, cCBM(i)=0.1(i+1), 

1≤i≤m, α=0.4, ε=0.01, w=7.
The transition probabilities are given as in Exam-

ple 1. It is also assumed that the preventive mainte-
nance, the condition-based maintenance, and the 
equipment replacement times are exponentially dis-
tributed with mean equal to mPM=0.833, mCBM=1 
and mR=1.666, respectively. The parameters bj, jϵS 
are arbitrarily chosen to be equal to  For each state 
i∈S, the action Ri=a, is defined for the actions a such 

State    0   1   2   3   4   5   6   7   8   9   10  11

Action    0   0    0 1B 1B 1B 1B   2   2   2    2   2

Table 13. Optimal policy form

State  0 1 2 3 4 5 6 7 8 9 10 11

CPM=2.0 0 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 2 g=3.82
CPM=2.5 0 1A 1A 1A 1A 1A 1A 1A 1A 2 2 2 g=4.22
CPM=3.0 0 0 1A 1A 1A 1A 1A 2 2 2 2 2 g=4.50
CPM=3.5 0 0 1A 1B 1B 1B 1B 2 2 2 2 2 g=4.60
CPM=4.0 0 0 0 1B 1B 1B 1B 2 2 2 2 2 g=4.61

Table 14. Optimal policy as CPM varies and the corresponding values of g

State 0 1 2 3 4 5 6 7 8 9 10 11

ci=0.5(i+1) 0 0 0 0 0 0 0 0 0  2  2  2 g=2.38
ci=1.0(i+1) 0 0 0 0 1B 1B 1B  2  2  2  2  2 g=3.68
ci=1.5(i+1) 0 0 0 1B 1B 1B 1B  2  2  2  2  2 g=4.61
ci=2.0(i+1) 0 0 1B 1B 1B 1B 1B  2  2  2  2  2 g=5.39
ci=2.5(i+1) 0 1A 1B 1B 1B 1B 1B  2  2  2  2  2 g=6.07

Table 15. Optimal policy as ci varies and the corresponding values of g

State 0 1 2 3 4 5 6 7 8 9 10 11

CR=5.0 0 0  0 1B 1B 1B 1B  2  2  2  2  2 g=4.61
CR=5.5 0 0 1B 1B 1B 1B 1B  2  2  2  2  2 g=4.67
CR=6.0 0 0 1B 1B 1B 1B 1B 1B  2  2  2  2 g=4.72
CR=6.5 0 0 1B 1B 1B 1B 1B 1B 1B 1B  2  2 g=4.74
CR=7.0 0 0 1B 1B 1B 1B 1B 1B 1B 1B 1B  2 g=4.75

Table 16. Optimal policy as CR varies and the corresponding values of g 
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that yia>0. The values of yia after the implementation 
of the linear programming algorithm, are given be-
low:

y00=0.5838, y10=0.2510, y20=0.2211, 
y3,1B=0.1736, y4,1B=0.1467, y5,1B=0.1303, 

y6,1B=0.1201, y72=0.1139, y82=0.1078, 
y92=0.1017, y10,2=0.0956, y11,2=0.0895

and the others yia are equal to zero. The above values 
of yia yield the optimal policy presented in the follow-
ing table.

The value of objective function for optimal solu-
tion equals to z=8.3864. This value is closely related 
to the values bj and the values of Vα (i,n) for this op-
timal policy. It was obtained by the value iteration al-
gorithm, since . A policy d is 
called a stationary randomized policy when it is de-
scribed by a probability distribution:

 for each state iϵS. Un-

der policy d action aϵA(i)  is chosen with probability 
dα(i) whenever the process is in state i. If  dα(i)  is 0 
or 1 for every i and aϵA(i), the stationary random-
ized policy d reduces to the deterministic policy. Be-
cause of the addition of constraints, the optimal poli-
cy may be randomized. 

It is supposed that in states 1,2,3,4,5,6 the expect-
ed discounted time of condition-based maintenance 
is no more than 0.3, which corresponds to the con-
straint:

y1,1B+y2,1B+y3,1B+y4,1B+y5,1B+y6,1B≤0.3,
and in states 7,8,9,10,11 the expected discounted 
time of equipment replacement is no more than 0.2, 
which corresponds to the constraint:

y72+y82+y92+y10,2+y11,2≤0.2.
The above constraints are added to the previous 

linear program and the new linear program has the 
following optimal solution:

y00=0.3906, y10=0.3137, y20=0.3603, 
y2,1A=0.2520, y4,1A=0.1632, y4,1B=0.0138, 
y5,1B=0.1520, y6,1B=0.1342, y7,1B=0.1210, 

y8,1B=0.1108, y9,1B=0.0891, y92=0.0138, 
y10,2=0.0964,  y11,2=0.0898 

and the others yia are equal to zero. The value of the 
objective function for the optimal solution is now 
equal to z=9.1014. Because of the additional con-
straints imposed, it is reasonable to have a higher 
value of the objective function for the optimal solu-
tion, than the one obtained without them. The above 
linear program solution that corresponds to the ran-
domized policy is given in the following table.

In state 4, preventive maintenance is done with 
probability 0.92 and condition-based maintenance is 
done with probability 0.08. In state 9, a condition-
based maintenance is selected with probability 0.86 
and the action of equipment replacement is selected 
with probability 0.14.

7. Comparison of two models

In this section, we compare the model described 
in Section 2 with a simplified model that has the 
possibility only for preventive maintenance and the 
equipment is replaced only in the degree of deterio-
ration 𝑚+1, which is the most common practice in 
scheduling system equipment maintenance.

In diagrams into Figure 2 below, the comparison 
of our basic model described in Section 2, with the 
simplified model, for values 𝐶𝐶𝐵𝑀∈{4.2,4.9} when 
𝐶𝑃𝑀∈[2,4] in the cases in which 𝑤=7, 𝑤=9 and 
𝑤=11 is presented. In these diagrams, the preventive 
maintenance, the condition-based maintenance, and 
the equipment replacement times are exponentially 
distributed.

For small values of 𝐶𝑃𝑀, the two models work 
similarly. The system chooses the preventive main-
tenance where it is possible, so the cost for both 
models is equal. As the values of 𝐶𝑃𝑀 increase, the 
condition-based maintenance option becomes pref-
erable for the basic model and the system selects the 
equipment replacement in some states, so the cost 

State    0   1   2   3   4   5   6   7   8   9   10  11

Action    0   0   0 1B 1B 1B 1B   2   2   2   2  2

Table 17. The optimal policy after the implementation of the linear programming algorithm

State    0   1   2   3   4   5   6   7   8   9   10  11
Action    0   0   0 1A 1A

1B
1B 1B 1B 1B 1B

2
2 2

Table 18. Optimal policy after the implementation of the linear programming algorithm with additional constraints into condition-
based maintenance and replacement times
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in basic model is lower. As the value of 𝑤 increases, 
the equipment replacement is chosen in fewer states, 
and this is the reason that causes an increment in the 
cost of the basic model. In the case in which 𝑤=11, 
where the choice of replacement does not exist, the 
basic model has almost the same cost as the simpli-
fied one. Based on this analysis, the choice of basic 
model for the management of the system is more 
efficient. This model includes all the options of the 
simplified model, so it can take advantage of the cost 
values and make the choice for the type of mainte-
nance each time. The choice in the value of 𝑤 does 
not affect the choice in the suitability of the model 
and the cost in the basic model is always less than or 
equal to the cost of the simplified model.

8. Conclusions and further research

In this work, a semi-Markov decision process 
model for the maintenance of system equipment 
which contains two types of maintenance, and the 
possibility that the system can define the replacement 
of the equipment if the degree of its deterioration ex-
ceeds a specific value, is presented. There is strong 
numerical verification that the resulting optimal 
policies are of a threshold type, and they are char-
acterized by two critical values. Using an appropri-
ate linear programming formulation, constraints are 
introduced on system parameters and in these cases, 

the changes into the form of the optimal policy are 
observed. The linear programming formulation to 
solve the problem of expected discounted cost for a 
semi-Markov decision process is something that has 
not previously been seen in the literature. Finally, the 
possibility to choose between different types of main-
tenance and replacement of equipment in degrees of 
deterioration other than the degree of deterioration 
equal to 𝑚+1, is an advantage for the system. The 
reason is that the system can benefit from low prices 
of some type of maintenance or replacement and 
make the most ideal action choices for each state.

The described model in this paper is limited to 
single-equipment systems. However, there are mul-
tiple-equipment systems (for example, parallel ma-
chine processing systems) in which their efficiency 
depends on the maintenance management of each 
equipment. The generalization of the model and its 
adaptation to systems with more than one piece of 
equipment is a possible direction for future research. 
The construction of a two-dimensional semi-Markov 
decision model in which two pieces of equipment of 
a system could be maintained or completely replaced 
is an extension and an area of further research. For 
such a model, the working condition of the sys-
tem can be described by the pair (𝑎1, 𝑎2), where 
𝑎1=0,1,..,𝑚𝑖+1, 𝑖=1,2, is the 𝑚𝑖+2 degrees of dete-
rioration for each equipment 𝑖∈{1,2}. The possible 
actions for this model could be (a) to maintain one 
equipment and the other to continue its operation, 

Figure 2. Comparison between the two models with exponentially distributed times
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(b) to replace one equipment and the other to con-
tinue its operation, (c) to replace one equipment and 
the other to be maintained, (d) to replace both equip-
ment, (e) to maintain both equipment, (f) to continue 
the operation of both equipment.
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