
Development of a Machine Learning Model for 
Predicting Hardness in the Water Treatment 
Pharmaceutical Industry  

1. Introduction

The water treatment industry generally includes 
multimedia filters, carbon filters, duplex softeners, 
reverse osmosis, and mixed beds [1]. The water treat-
ment process in the softener tank serves to reduce 
water hardness. A softener tank is a tank with an an-
ion cation resin. Hard water is water that contains an-
ions other than bicarbonate ions. For example, it can 
be in the form of Cl-, NO3- and SO42- ions, which 
means that the dissolved compounds can be Calci-
um Chloride (CaCl2), Calcium Nitrate (Ca(No3)2), 

Calcium Sulphate (CaSO4), Magnesium Chloride 
(MgCl2), Magnesium Nitrate (Mg(NO3)2) and Mag-
nesium Sulfate (MgSO4) [2]. 

High water hardness when passing through Re-
verse Osmosis (RO) filtration im pacts the mem-
brane fouling process and the formation of scale in 
the piping, which causes a decrease in the flow rate 
so that the production of clean water will decrease. 
The softener process requires regeneration to reacti-
vate the saturated or inactive Cation Anion Exchange 
due to removing water hardness. Currently, the phar-
maceutical industry performs softener regeneration 
manually based on estimated time. According to the 

The pharmaceutical industry has a water treatment process for production needs, and the 
softener process reduces the content of Ca2, Mg2. Few studies have been conducted to 
predict hardness in water. Some related studies have been undertaken to indicate lake water 
quality, water sulfur content, and water content in reverse osmosis output in factory water 
systems. This study aims to determine the prediction of hardness in water treatment systems 
using machine learning random forest regression and long short-term memory. The dataset is 
from Programmable Logic Controller records and daily sampling data from pharmaceutical 
factory laboratories. Machine learning models developed hyperparameter tuning processes 
to get the most optimal results. The best machine learning model is RFR with R2 Train 0.990 
and R2 Test 0.960, while LSTM with R2 Train 0.946 and R2 Test 0.917.  
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World Health Organization, the hardness limit for 
drinking water is 500 mg/l, while for industrial wa-
ter systems, the softener limit is 30 ppm [3]. Another 
study found a correlation between flow velocity and 
increased water hardness [4]. 

Machine learning has the potential to be applied 
in the industry through the use of big data and fast 
computing processes in decision-making. If the data 
processed by machine learning is done correctly in 
critical actions, it can be helpful information to con-
tribute to decision-making [5]. In this case, machine 
learning has the opportunity to be applied in pre-
dicting the softener tank regeneration process in the 
pharmaceutical water treatment industry. 

Previous research has conducted the use of ma-
chine learning in predicting permeate flux perfor-
mance in Reverse Osmosis found that Artificial Neu-
ral Networks (ANN) have a good ability to predict the 
model compared to the Multiple Linear Regression 
(MLR) model [6].  In another study, prediction mod-
els for groundwater quality have been conducted us-
ing machine learning: Deep Learning (DL), Random 
Forest (RF), Gradient Boosting (GB), and Artificial 
Neural Networks (ANN). The best model is using 
deep learning with an accuracy of R2 = 0.996 [7].

To solve the problem of the regeneration process 
of anion cation exchangers in the water treatment in-
dustry. This study is proposed to predict water hard-
ness in softener systems. Objectives of this study:

(1)	 What are the attributes that affect water hard-
ness? 

(2)	 What is an accurate machine learning model 
to predict softener hardness?

The proposed machine learning prediction mod-
el utilizes Long Short Term Memory (LSTM), Ran-
dom Forest Regression (RFR). Since the softener 
system runs in a closed system, indirect observations 
are made by utilizing sensors and instrumentation in 
the water treatment system. 

This paper is organized as follows: In the first sec-
tion, the background of this study is elaborated. In 
the second section, we outline related theory. In the 
third section, we detail our research methodology. In 

the fourth section, the result of this study is reported. 
Finally, in the last section, we conclude our study and 
discussion.

2. Related works

2.1 Recurrent Neural Network (RNN) type 
Long Short- Term Memory (LSTM)

RNNs are very effective in recognizing patterns 
in sequential data such as time series, word sequenc-
es, speech recognition, and genetic information in 
DNA[10]. Basic Neural Network types such as feed-
forward are unsuitable for processing sequential data. 
This is because, in a feed-forward neural network 
(FFNN), data is fed separately so that most attributes 
of both the input and output have no dependency 
on each other. In addition, the flow of FNNN data 
processing from input to output is one-way [11] In 
contrast, RNNs have the memory to process samples 
simultaneously on each element that has a relation-
ship with the previous calculation process.

The structure of an RNN can be seen in Figure 1. 
An element of an RNN module can be decomposed 
into a complete sequence of network processes. The 
parameters U, V, and W are the weight matrices used 
in the training data. The RNN performs an iterative 
function on each input to produce an output stored 
in memory. Inputs in a state and outputs from previ-
ous processes are considered the final decision of the 
entire sequence. The RNN structure can be written 
in the following mathematical equation [12]:

(1)

(2)

(3)

(4)

where xi is the input variable at step t, Whx, Whh and Wo 
are the weight matrices at the hidden state, bh and by 
are the let vectors, σ and g are the sigmoid functions 
or activation functions. ti, hi, and si are the temporal 

Figure 1. RNN model structure [11]
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hidden variables. While ô is the resulting output.
One of the problems that arise in the RNN al-

gorithm is the failure to understand long term and 
dependencies if the sequence is too long due to van-
ishing gradient and exploding gradient [12]. Vanish-
ing gradient occurs when changes in a parameter tend 
to keep shrinking over time until finally the network 
cannot understand changes in output [13]. While ex-
ploding gradient occurs when the input weights con-
tinue to grow during backpropagation training, thus 
slowing down the computational process [14].

To overcome the vanishing gradient and explod-
ing gradient problems, a modification of RNN called 
Long Short-Terma Memory (LSTM) was developed. 
The idea of LSTM is to involve sequential data in a 
cell memory, but still controlled so that the gradient 
descent and objective function do not disappear in 
the training process [15]. This cell memory is what 
makes LSTM able to understand information in the 
short and long term. In LSTM, information entering 
the memory cell is controlled by three gates, namely 
the input gate, forget gate and output gate to over-
come the vanishing gradient and exploding gradient 
problems. Figure 2 illustration of LSTM architecture.

The schematic of the LSTM and the relationship 
between the three gates are explained in the follow-
ing steps. The input gate controls which input values 
can enter into the memory cells. The mathematical 
model for input values and candidate memory cells 
uses equations 5-10 [16].

(5)

(6)

(7)

(8)

(9)

(10)

where It is the input value  is the memory cell can-
didate value at time t. ht-1  is the output value from 
time t-1. Wi, Wc are the input values at time t, and 
cell c, respectively. Ui, Uc are the weights of the output 
values at time t-1, and cell c-1, respectively. bi, bc are 
biases on the input gate value and cell c, respectively. 
σ is a sigmoid function, and tanh is a hyperbolic tan-
gent function. ft  is the value of forget gate. Wf  is the 
weight for the input value at time t. Uf  is the weight 
for the output value at time t-1. bf is the bias on the 
forget gate. Ct is the memory cell value. Ct-1 is the 
memory cell state value at the previous cell computa-
tion. where ot is the value of the output gate. Wo is the 
weight for the input value at time t. Uo is the weight 
for the output value from time t-1. bo is the bias at the 
output gate. ht is the value of the final output.

2.2 Random Forest Regression (RFR)

Random Forest is a supervised learning algorithm 
that uses ensemble learning techniques. The ensem-
ble learning in Random Forest combines multiple 
aggregate decision trees to predict or classify the out-
put of a variable [17]. The Random Forest step starts 
by selecting some random samples (bootstrap) from 
the training data subset through a process called bag-
ging. Bagging is a technique of replacing training data 
by re-sampling randomly selected samples without 
removing the selected data from the input that will 
be used by the next subset [13]. The Random Forest 
method developed by [18] includes a set of classifier 
trees {h(x,Θk), k = 1,...,} from the training set, where 
Θk is an identically distributed random vector on the 
tree run for k, and x is the input vector. After several 
tree nodes are sequentially formed, a voting process 
is performed on each tree sample. The classification 
of the tree that gets the most votes is the output of the 
model. Decision function for majority voting.

(11)

Where H(x) is some combination of classifier mod-
els, hi is each tree node, Y is the output variable, and 
I is the indicator function. 

Random sampling allows the data to be used more 
than once in the training sequence of another subset, 
making the prediction results more stable and robust 
especially when facing input data variations. Data that 
is not selected in the bagging process for training at 
each tree node becomes part of another subset in the 
form of Out-Of Bag (OOB), which is used to predict 
classifier performance.

Figure 2. LSTM architecture with three gates [16]
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Besides being used for classification problems, 
Random Forest can also be used for regression prob-
lems, called Random Forest Regression (RFR). RFR 
estimators produce continuous-valued outputs, in 
contrast to classification tasks that produce categori-
cal or binary variables (VanderPlas, 2016). RFR uses 
the same algorithmic steps as the Random Forest 
Classifier. The RFR model works by forming a tree 
that depends on a random variable Θ, relative to the 
category class, so that the predictor tree h(X, Θk) 
produces a continuous-valued output.

3. Methodology design

3.1 Dataset

This process explains the details of the data pro-
cessing method, from raw data to data ready to be 
inputted into the machine learning algorithm. Before 
running the machine learning algorithm, prepara-
tions are made, namely the collection of sensor data 
downloaded from the Programmable Logic Control-
ler (PLC). Figure 3 show a list of all of the instrument 
and describe the variable. Moreover, daily record 
data carried out in the 2016-2022 range. This data 
has 791 rows with ten attributes shown in Table 1. 
The target variable is the hardness of the softener 
tank obtained from the laboratory instrument analy-
sis of the output sample from the softener.

Figure 3 shows the maximum and minimum val-
ues of the hardness target, 0.01 and 4.29. The maxi-
mum tolerance for the acceptability of hardness val-
ues is one if it exceeds the tolerance value limit. A 
regeneration process is required. From the data, it 
also knows that at a certain time after the tolerance 
value limit is reached, the regeneration process is not 
carried out so that the value read reaches 4.29.

3.2 Research Flow

In the supervised learning algorithm process, it 
is necessary to separate data for the training process 
and model prediction. In this research, the data is di-
vided into three parts, 70% training data, 10% model 
validation and 20% testing. The resulting model will 
be evaluated using three performance metrics for re-
gression tasks, namely mean squared error (MSE), 
root mean squared error (RMSE), and coefficient of 
determination (R2). The evaluation follows equations 
12-13 [19], 14 [20] as follows:

(12)

(13)

(14)

If R2 = 1, the regression prediction fits the actual 
data points perfectly. On the other hand, R2 =0 im-
plies that the prediction around the data points' mean 

Sensor Sensor Type

PT-401 Pressure Transmitter inlet 

PT-402 Pressure Transmitter outlet

DeltaPT Differential pressure inlet and outlet

CE-401 Conductivity Transmitter inlet

CE-402 Conductivity Transmitter Outlet

TT-00 Temperature Transmitter inlet softener

ORP-01 Oxidation reduction Potential

pH-401 pH transmitter outlet Softener

TT-01 Temperature Transmitter outlet Softener

Table 1. List of sensor variables used

Figure 3. Research Data Description
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explains none of the data points' variability. A value 
outside the range of 0 to 1 occurs when the model fits 
the data worse than the mean horizontal hyperplane 
(mean for each dimension). This could indicate that 
the model is not an appropriate fit for the data. The 
MSE measures the average of the errors squared, 
where the error is the difference between the actual 
data point and the data point generated by the model. 
Fig 4 shows research flow of this research.

4. Methodology application

4.1 Hyperparameter Settings LSTM and RFR

Hyperparameter tuning is performed to find 
the most optimal set of hyperparameters for the al-
gorithm to perform the learning process. Hyperpa-
rameter tuning is done to find the best-fitting model 
to improve the evaluation of machine learning. The 
method used in hyperparameter tuning in Random 
Forest Regression is the randomized grid search CV, 
which tries hyperparameter inputs that provide ran-
dom iteration limits. The best output is determined 
based on the metrics used in the algorithm. This 

study used a number of 300 iterations with five cross-
validations, resulting in 2240 fittings from 448 candi-
dates. Table 2 shows the hyperparameter settings in 
this study. 

While in the LSTM hyperparameter tuning 
process, two optimization methods are carried out, 
namely the Adam and Rmsprop methods; due to the 
stochastic nature of LSTM, it is necessary to do mod-
el fitting for 100 repetitions to get objective results. 
The output score obtained is the median score of the 
model-fitting repetition.

5. Result 

5.1 Features analysis 

A Pearson correlation analysis is used to investi-
gate the relationships between hardness and the nine 
potential features. Only the training dataset is used 
to ensure that the model is not biased [21]. The cor-
relation (R) between each potential feature and the 
response is shown in the correlation heat map Figure 
5. The selection of features from the correlation heat 
map follows two principles In this process [21]. 

Figure 4. Research flow
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Features that have a correlation matrix in the range 
of <-0.5 or >0.5 will be selected as predictor variables 
PT-402 (0.7), DeltaPT (0.6), CE-402 (0.7), pH-401 
(0.8), and TDS (0.6). Based on the correlation ma-
trix obtained, the features Temperature Transmitter 
(TT-00), Temperature Transmitter (TT-01), ORP-
01, and Conductivity Transmitter (CE-401) will be 
removed from the predictor variables.

5.2 Prediction Result

In the first model, we develop the RFR baseline 
model and RFR with hyperparameter tuning. Figure 
4 shows R2 RFR after hyperparameter tuning. For 
the second model, we develop LSTM with a baseline 
model and LSTM with a hyperparameter. Figure 6. 
Show result R2 LSTM and RFR before and after hy-
perparameter tuning.

Based on the performance of the results of the 
machine learning model shown in Tabel 3. the best 
model is random forest regression, this is because the 
dataset used is not a time series, and the shape of the 
data is tubular, so the LSTM machine learning can-

not display the best performance. Research has been 
done by comparing machine learning models Artifi-
cial Neural Network (ANN), Genetic Programming 
(GP), and Support Vector Machine (SVM) to pre-
dict water turbidity in a macro-tidal coastal bay. If the 
data used is in the form of time series, the machine 
learning that produces the best performance is ANN 
[22]. Another research to predict phosphate in water 
system reservoirs has been carried out by comparing 
four machine learning models, namely Artificial neu-
ral network (ANN), Support vector machine (SVM), 
Random Forrest (RF), and Boosted tree (BT) [23]. 
ANN model is the best for predicting phosphate con-
tent in water system reservoirs if the data used are 
time series. 

5.3 Transfer Learning LSTM

The result shows that all models did not suffer 
overfitting or underfitting based on the plots in Fig-
ure 7. Therefore, the generalization capability of all 
models is assured. From the plotting results of Fig-
ure 7. it can be observed that if using the optimizer 

Figure 5. Correlation matrix variables and target hardness

Random Forest Regression Long Short Therm Memory

Hyperparameter Candidate Value Optimized Value Hyperparameter Value Hyper Parameter Value

N estimator 50, 100, 150, 
200, 250, 300 50 Time Lag n=32 Dropout 0

Max features 0.3, 0.6, 0.8, 1 0.6 Imput Layer 2 Epoch 100

Max depth 20, 50, 80, 100 20 Output Layer 1 Learning Rate 0.1, 0.01, 0.001, 
0.0001

Min Samples leaf 1, 5, 10, 15 1 Hidden Neuron 128 Weight decay 0

Bootstrap True, False TRUE Batch Size 16 Optimizer ADAM, Rmsprop

Table 2. Hyperparameter setting for RFR and LSTM model 
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Figure 6. Result R2 Based and hyperparameter RFR (a) and R2 Based and Hyperparameter LSTM (b)

MSE RMSE R2 train R2 test

LSTM base model 0.2536 0.3022 0.929 0.880

LSTM hyperparameter 0.1123 0.1717 0.946 0.917

RFR base model 0.0447 0.1069 0.986 0.954

RFR Hyperparameter 0.0463 0.0981 0.990 0.961

Table 3. Base model performance comparison with after hyperparameter tuning 

Figure 7. Learning rate with Adam Optimizer (a) from I rate 0.1-0.0001 and (b) with Rmsprop from I rate 0.1-0.0001
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method 'Adam,' the best learning rate is at a value 
of 0.001 and 100 epochs because it produces the 
smallest mean squared error value in training and 
validation. Meanwhile, when using the 'Rmsprop' op-
timizer method, the best learning rate is at an I rate 
of 0.01 and 59 epochs which produces the slightest 
mean square error of 0.1705. 

6. Discussion and conclusion

Hardness is one of the crucial parameters in mea-
suring the water quality status of water system phar-
maceuticals. This study focuses on predicting models 
based on machine learning to capture the Hardness 
level in pharmaceutical water systems. The result re-
veals that Random forest exhibits the highest accura-
cy in predicting the hardness. Nine input parameters, 
such as Conductivity, Total dissolve solute, pressure, 
different pressure, and pH, have been selected as in-
put to the proposed models. The result revealed that 
the Random forest regression model exhibited the 
highest accuracy compared with other models where 
RMSE= 0.0981, MSE = 0.0463, and R2 test = 0.961. 
Due to the absence of research on hardness in phar-
maceutical water systems, other prediction methods 
are needed that can be applied to test the accuracy of 
the machine in predicting results.
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