
A new hybrid algorithm for solving the vehicle 
routing problem with route balancing

1. Introduction

Vehicle routing problem (VRP) is one of the es-
sential issues in logistics management. A traditional 
VRP is to dispatch vehicles from the depot to serve 
all the customers and then return to the depot. Vari-
ous vehicle routing problems have been developed 
to cope with different situations, such as vehicle rout-
ing problems with time window constraints [1], het-
erogeneous fleet vehicle routing problems [2], the 
heterogeneous fixed fleet in an open vehicle routing 
problem [3], vehicle routing problem with multi-
depots [4, 5, 6]. Other excellent research related to 

different topics, including multi-compartment [7, 8], 
pickup and delivery [9, 10, 11], feeder VRP [12], and 
electric VRP [13], can also be found in the literature. 
In addition to the conventional deterministic routing 
problems, some concentrated on solving the VRP 
with stochastic demand, such as vehicle routing prob-
lems with stochastic demand and duration constraints 
[14] and inventory routing problems with demand 
uncertainty [15]. Other outstanding research, such 
as Laporte et al. [16] and Rei et al. [17], can also be 
found in the literature.

All the versions of VRP mentioned above aim to 
minimize the total travel cost. However, from a mana-

This paper addresses a vehicle routing problem with route balancing to minimize the to-
tal travel cost and equity measurement. We propose a hybrid method combining Particle 
Swarm Optimization and Ant Colony Optimization with the global search characteristic of 
PSO and the path-finding ability of ACO. The proposed method first solves the benchmark 
instances to obtain the total travel distance and the equity measurement value. Then, by 
considering predefined threshold values of the equity measurement in the original solution, 
the vehicle routing problem with route balancing can be solved using the proposed method. 
Experiments are conducted to obtain better-balanced routes by considering more than one 
equity measurement. The results showed that this hybrid mechanism is promising to become 
a better method of VRP.
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gerial perspective, dispatching vehicles with balanced 
routes is more appropriate. More balanced routes 
indicate that all routes are more similar regarding eq-
uity metrics such as route length. The route balanc-
ing problem tries to even out the workload distribu-
tion. It is essential for workforce planning that all the 
routes have near working time so that drivers’ shifts 
are close to each other. 

Solving the vehicle routing problem with route 
balancing (VRPRB) is to yield more balanced routes; 
however, the total travel length will inevitably be 
lengthened [18]. If the route balance is the only thing 
concerned, the entire travel length could be pro-
longed tremendously. The output results of Borgulya 
[19] demonstrated this phenomenon. It is a trade-off 
between the total route length and the route balance. 
This study proposes a combinatorial algorithm of 
Particle Swarm Optimization (PSO) and Ant Colony 
Optimization (ACO) to solve the VRPRB by consid-
ering various equity measurements to examine the 
proposed algorithm’s feasibility. Meanwhile, experi-
ments are conducted to figure out the balance point 
between the total travel distance and the route bal-
ance.

The remaining sections are organized as follows. 
Section 2 briefly reviews research related to VRPRB. 
In section 3, the model for VRPRB is presented. Sec-
tion 4 consists of the introduction of PSO and ACO, 
as well as the proposed solving process. Section 5 
provides the experiments, the computational results, 
and the sensitivity analysis of the solving process. Fi-
nally, section 6 concludes the research findings and 
suggests future research.

2. Related works of vehicle routing 
problem with route balancing 

Vehicle routing problem with route balancing 
(VRPRB) is generally modeled as a bi-objective or 
multi-objective optimization problem [20, 21] in 
which the main objective is the total travel cost, and 
the other is the equity. Equity measurement indicates 
the equalization level of routes, which also reflects 
workload balance. For instance, Oyola and Lok-
ketangen [22] adopted the difference between the 
maximum and minimum route distances (the range) 
as the second objective to solve the route balancing 
problem, as well as Jozefowiez et al. [23]. Keskin-
turk and Yildirim [24] tackled the bakery distribu-
tion VRP by minimizing the average sum of relative 
imbalance. They used the term “work balance” to 

indicate that the model balances the route working 
time, which comprises the travel and loading time. 
Lozano et al. [25] discussed equity as the cumulative 
difference (of all routes) between the given route and 
the minimum route and variance of route lengths. 
Jingjing et al. [26] considered equity as the maximum 
and minimum workload ratio. In their research, the 
workload combines route length and load. In Linfati 
et al.’s study [27], the workload balancing is based 
on the deviation concerning the average load of the 
routes.

Another way to consider the balanced routes 
is to deal with a min-mix vehicle routing problem 
(min-max VRP). A min-max VRP is to find a solu-
tion in which the cost of the longest route is mini-
mized instead of finding the solution with the least 
total travel cost. Minimizing the maximal route 
length implies balancing the routes. This objective 
could be more suitable for some circumstances, 
such as disaster relief efforts, computer networks, 
and workload balance. To the best of the authors’ 
knowledge, the number of related research using 
min-max as equity measurement is more than oth-
er indicators. For example, Golden et al. [28] were 
probably one of the earliest attempts to solve the 
min-max VRP. They proposed Tabu search and 
adaptive memory heuristics as the solving process 
to generate good quality solutions within reason-
able computer processing time. Bertazzi et al. [29] 
analyzed the conventional VRP with a minimum 
total length objective (min-sum) and the min-max 
VRP in the worst case.

Some researchers studied the variants of min-
max VRP for different circumstances. For instance, 
Yakici [30], based on the Ant Colony Optimization 
method, proposed a heuristic approach to solve the 
min-max VRP with mixed fleet and demand. Rab-
bani et al. [31] solved a bi-objective and multi-depot 
VRP with time windows by mixed integer non-linear 
programming. Narasimha et al. [32] and Wang et al. 
[33] worked on the min-max multi-depot VRP and 
solved it using the Ant Colony Optimization tech-
nique and a heuristic approach, respectively. Wang 
et al. [34] developed a multi-period workload balanc-
ing problem under stochastic demand and dynamic 
daily dispatching.

This paper proposes a combinatorial algorithm of 
Particle Swarm Optimization (PSO) and Ant Colony 
Optimization (ACO) to solve the VRPRB. We also 
solve the VRPRB by combining the total travel dis-
tance and the equity measurements as the objective 
function so that the travel distance and equity mea-
surements can be optimized simultaneously.
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3. Problem description 

Let G=(V,E) represents a graph in a plane 
where V={v0,...,vn} denotes the set of vertex and 
E={(vi,vj):vi,vj∈V} denotes the set of edges. Vertex 
v0 represents the depot, and the remaining vertices 
correspond to customers. Each customer vi is associ-
ated with a non-negative demand di. Also, each edge 
(vi,vj) is associated with a non-negative cost cij. A set 
of vehicles K is located at the depot initially, and each 
vehicle has an identical capacity, Q. The VRP deter-
mines a set of vehicle routes that start and end at the 
depot and visit customers during its journey without 
violating any constraints such as flow conservation 
and capacity constraints. The objectives of the VR-
PRB are to minimize the range ( ) and optimize the 
total travel cost. 

Sets:
V		 Set of vertex
K		 Set of vehicles
S		 Subset of V

Model parameters:
cij		 Travel cost of arc (i, j)
rmax	 Route with max cost among the routes.

rmin	 Route with min cost among the routes. 

dj		 The demand of node j
Q		 Vehicle capacity
	 		 The range; the distance difference between 

rmax and rmin

z		  Total travel cost
ε		  Predefined threshold value

Indices:
i, j	 Indexes for nodes
k		  Index for vehicle

Decision variable:

	 	 Binary variable, = 1 if the vehicle k travels 
from node i to node j, 0 otherwise 

Model formulation
	

(1)

(2)

s.t.

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

The objective functions of the problem are for-
mulated as Equations (1) and (2). Equation (1) is the 
total travel distance as conventional VRP, and Equa-
tion (2) is the difference between the maximum and 
minimum route distances (the range). Constraints (3) 
and (4) ensure that each customer is visited once and 
only once. Constraint (5) indicates that each vehicle 
departs from the depot and returns to the depot. 
Constraint (6) is the vehicle capacity constraint; the 
total demand on the route shall not exceed the vehi-
cle capacity. Constraint (7) is the sub-tour elimination 
constraint. Constraint (8) circumscribes the route 
with the longest route distance, and Constraint (9) de-
fines the route with the shortest route length among 
all the routes. These two parameters (rmax and rmin) 
are auxiliaries for . The parameter  is a general 
term for measuring route balance, but not limited to 
this indicator. Constraint (10) denotes that  is a 
decision variable.

Generally, the first objective z will be lengthened 
while the second objective  gets shortened. That 
means these two objectives conflict with each other. 
Such a phenomenon makes mathematics program-
ming challenging to be solved. Thus, we modify the 
mathematics program by removing the second objec-
tive (i.e., Equation (2)) and revise it as a constraint. 

	
(11)

Equation (11) indicates that the equity measure-
ment (the range) is sufficiently acceptable as long as 
this constraint is satisfied, meaning that the range is 
less than a predefined threshold value ε. This revised 
model can avail us to solve the problem.
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4. Methodology

This study proposes a hybrid algorithm combin-
ing PSO and ACO to solve the VRPRB. This pro-
posed hybrid mechanism combines the global search 
characteristic of PSO and the path-finding ability of 
ACO. 

PSO was initially proposed by Kennedy and Eb-
erhart [35], inspired by the movement of organisms 
such as bird flocks or fish schools. Each particle has 
a speed moving toward the current best solution. The 
velocity and the position of each particle are changed 
according to the following equations.

(12)

(13)

Parameter  denotes the position of a particle 
and  indicates the speed of the particle on the kth 
iteration. Also, Pbest and Gbest represent the best solu-
tions found by a particle and globally, respectively. 
The parameter ω is the inertia weight to manage the 
trade-off between the swarm’s global and local explo-
ration abilities. Besides, parameters ϕ1 and ϕ2 are 
acceleration factors to control the relative attraction 
of Pbest and Gbest, respectively. Moreover, r1 and r2 
are random numbers from 0 to 1. The particles will 
move in the search space based on Equations (12) 
and (13) toward the best solution. Better solutions 
are anticipated to be found during the movements. 

The position of a particle in the solution domain 
indicates one feasible solution. Every movement of 
one particle infers that the particle moves from one 
solution to an adjacent solution in the search space. 
In this study, the ACO is recruited to manipulate 
particle movement. The ACO used in this study is 
based on the Ant Colony System (ACS) proposed by 
Dorigo and Gambardella [36], constituted by three 
main aspects, i.e., state transition rule, local phero-
mone updating rule, and global pheromone updat-
ing rule.

•	 	State transition rule

The state transition rule is used to determine the 
next stop for an ant and is formulated as Equation 
(14).

	

(14)

Set Ωi contains all feasible nodes for ant i and Attij 
indicates the attraction of arc (i, j). The attraction of 
arc (i, j) can be calculated by Equation (15).	

(15)

Parameters τij and ηij denote the amount of pher-
omone and the reciprocal of the distance between 
nodes i and j, respectively. The corresponding ex-
ponents α and β control the influence of the phero-
mone value allocated on arc (i, j) and the desirability 
of arc (i, j), respectively. The parameter q is a random 
number, and 0<q0<1 is predetermined. The next 
traveling arc will be the one with maximum attraction 
while q<q0 holds. Otherwise, the next traveling arc of 
an ant will be determined by the state transition prob-
ability pij, which can be calculated by Equation (16).

	 	

(16)

•	 	Local pheromone update

The ants deposit a tiny amount of pheromone on 
the path they traversed, and the pheromone is evapo-
rated with time. It is called the local pheromone up-
date. Assume 0<ρ<1 denotes the evaporation rate 
and τ0=1/(N⋅Jψini) is the initial trail intensity in which 
N is the total number of nodes and Jψini is the cost of 
the initial solution. The local pheromone update rule 
is represented as Equation (17).

(17)

•	 	Global pheromone update

After a preordained number of iterations, all arcs’ 
pheromones are updated according to the current 
optimal route ψgl , and it is called the global phero-
mone update. The pheromone levels on the arcs are 
reset to their initial status, and the arcs constituting 
ψgl will be deposited with a specific amount of phero-
mone, according to Equation (18). The parameter 
Jψgl is the cost of the best solution ψgl at present. This 
rule resets the ant colony’s situation to an optimal 
start so that it has a higher probability of approaching 
a better solution.

(18)

These two methods, PSO and ACO, are com-
bined as a hybrid algorithm named Ant Swarm Op-
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timization (ASO). The structure of ASO is mainly 
based on PSO. A particle contains the best solution 
of the particle and a matrix for the pheromone de-
posited. The ACO is recruited to change the posi-
tion of a particle. Each particle contains one ant that 
will conduct the solution searching. In this study, the 
pheromone deployment of one solution is treated 
as the “eigenvalue” of particle position in the search 
space. Pheromones are superimposed on the trails of 
the global best solution (Gbest), the particle best solu-
tion (Pbest), and the particle current solution for each 
particle. Parameters v1, v2, and v3 are the weights of 
Gbest, Pbest, and the current solution (ψ), respectively, 
to control the moving speed and direction of the par-
ticle. That means the amount of pheromone depos-
ited on an arc in the process of the local pheromone 

update scheme will be as Equations (19) to (21).
	

(19)

(20)

(21)

Thus, a new solution generated through these 
pheromone distributions can be treated as a particle 
moving from its current position to the best solution. 
Figure 1 depicts the flowchart of ASO. After setting 
up the graph and all the constants, such as P (number 
of particles), and R (number of rounds), an ant of one 
particle is dispatched to create the initial solution. A 
round means that all the ants in all the particles made 

Figure 1. Flowchart of ASO
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one move and created one new solution. If an ant 
can yield a better solution than the corresponding 
particle’s best solution (Pbest) or the global best solu-
tion (Gbest), the new solution will substitute for the 
Pbest or Gbest. The local pheromone update scheme is 
conducted right after a move, and the global phero-
mone update scheme is conducted when the number 
of rounds is a multiple of a predefined constant (Ε). 
This solving process stops as soon as the number of 
rounds equals a predefined number R, and the Gbest 

recorded is the final solution obtained.

5. Experiment design and discussion

5.1: verifying ASO by solving capacitated 
vehicle routing problem

The test problems choose Instances 1-5 and 11, 
12 of Christofides et al. [37] to verify the quality of the 
solution process. These Capacitated Vehicle Routing 
Problem (CVPR) problems contain customers rang-
ing from 50 to 199. The parameter settings related to 
ACO are as follows. Parameter q0 is set to 0.3, ρ is set 
to be 0.2, as well as α∈[2, 3, 4, 5] and β∈[2, 3, 4] ac-
cording to the experiments of parameter examining. 
The global pheromone update is conducted every 30 
rounds (Ε=30). In addition to the parameter settings 
related to ACO, the parameters related to PSO are 
as follows. The number of particles is set to 30, and 
the speed control parameters v1, v2, and v3 are set 
to 1/3. The solving process stops as soon as the to-
tal moving rounds equals 900. A program based on 
the proposed algorithm is coded using the computer 
language Python and executed on a desktop with 
Inter(R) Core(TM) i7-4790 CPU@ 3.60GHz and 
8GB RAM. We then apply this program to solve the 
benchmark dataset to examine the performance of 
the solving process. The outputs are listed in Table 1.

The solutions of the CMT1 and CMT12 are equal 
to the optimum solutions, as shown in Table 1. Also, 
the difference ratio (dr) of other instances’ solutions 
and optimum solutions are less than 1%, except for 
CMT4 and CMT5. It is observed that problem size 
is a critical factor in affecting performance. These 
output results indicate that the proposed method is a 
promising algorithm for solving the problems.

5.2: using ASO to solve VRPRB

In order to minimize the travel cost and the eq-
uity measurement (the range between maximum and 
minimum route distances) simultaneously, the objec-
tive function is modified as Equation (22) while solv-
ing the VRPRB where ν is the weight of the equity 
measurement. Equation (22), the objective function, 
is constituted by the total travel distance and weight-
ed equity measurement. This objective can minimize 
the total travel distance and equity measurement si-
multaneously.

(22)

To examine the performance of the ASO in solv-
ing the VRPRB, we set the threshold values of equity 
measurement (ε) shown in the constraint Equation 
(11). The values of 3/4, 1/2, and 1/4 of the range be-
tween the maximum and the minimum route distanc-
es found in the CVRP, which is the  value 
listed in Table 1, are used as the threshold values to 
solve the route balancing problems accordingly. The 
output results are listed in Table 2.

It can be observed from Table 2 that the to-
tal travel distance (TD) is increased along with the 
decrement of the difference between the maximum 
and the minimum route distances ( ) for VR-
PRB, as we expected. When considering the value 
of ε equals 3/4 of , the solution can be easily 

Instance n Q v α β os s rmax rmin dr

CMT1 50 160 5 3 3 524.61 524.61 118.52 98.45 20.07 0%

CMT2 75 140 10 3 2 835.26 840.94 120.16 42.67 77.49 0.68%

CMT3 100 200 8 2 2 826.14 827.39 126.90 59.35 67.55 0.15%

CMT4 150 200 12 4 3 1028.42 1055.00 129.17 39.08 90.09 2.58%

CMT5 199 200 17 4 4 1291.44 1401.94 137.99 20.80 117.19 8.56%

CMT11 120 200 7 5 2 1042.11 1043.65 213.63 66.96 146.67 0.15%

CMT12 100 200 10 3 3 819.56 819.56 137.02 43.59 93.43 0%

Note: n: number of customers; Q: vehicle capacity; v: number of vehicles; os: optimum solution; s: solution achieved by ASO;  

rmax: the max cost among the routes;  rmin: the min cost among the routes;   = rmax - rmin; dr: difference ratio, .

Table 1. The results of the CVRP problems using ASO
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obtained with a related smaller equity measurement 
weight ν along with less than 5% of the travel dis-
tance increment. For instance, the  of CMT1 
can be reduced to 3/4 of its  by increasing 
2.31% of its original distance. In order to reduce the 

 to 1/2 of , the travel distance may 
need to be extended to as big as 35.92% and 18.46% 
for CMT11 and CMT12, respectively. Moreover, 
considering the value of ε equals to the value of 1/4 
of   requires much bigger ν to achieve a solu-
tion, and the travel distance extension is larger than 
anticipated. It is noted that considering the value of ε 
equals to 1/4 of , the solutions for CMT5 and 
CMT12 cannot be figured out here.

Hypothetically, a much more condensed max 
route should help reduce the distance difference be-
tween the maximum and the minimum route, which 
means better-balanced routes. In light of this prem-

ise, the objective function is revised as Equation (23) 
by adding the equity measurement min-max, e.g. rmax, 
into the objective function. 

(23)

The parameter μ in the last term of the objective 
function (23) is the weight of the max route. This 
term is anticipated to compact the max route so that 
all routes reach balance. Equation (23) is a general 
form in which Equation (22) is the case when μ=0. 
The benchmark dataset is solved under the scenarios 
that μ =1, 2, and 3 to verify the abovementioned hy-
pothesis. The output results are listed in Table 3. It 
can be observed that we can find some better solu-
tions that dominated the solutions while μ=0. How-
ever, the results are tangled, so it is difficult to distin-
guish the trend.

 ε=(3/4) 
Instance s ε TD v dir

CMT1 524.61 15.05 536.74 11.17 2 2.31%

CMT2 840.94 58.12 861.39 30.20 1 2.43%

CMT3 827.39 50.66 908.64 24.84 2 9.82%

CMT4 1055.00 67.57 1068.15 52.59 1 1.25%

CMT5 1401.94 87.89 1416.88 41.81 1 1.07%

CMT11 1043.65 110.00 1271.95 107.91 2 21.88%

CMT12 819.56 70.07 931.44 46.70 4 13.65%

ε=(1/2)   
Instance s ε TD v dir

CMT1 524.61 10.04 546.00 8.42 4 4.08%

CMT2 840.94 38.75 861.39 30.20 1 2.43%

CMT3 827.39 33.78 908.64 24.84 2 9.82%

CMT4 1055.00 45.05 1108.14 39.09 2 5.04%

CMT5 1401.94 58.60 1416.88 41.81 1 1.07%

CMT11 1043.65 73.34 1418.51 42.50 5 35.92%

CMT12 819.56 46.72 970.85 40.46 5 18.46%

 ε=(1/4)   
Instance s ε TD v dir

CMT1 524.61 5.02 550.15 4.85 12 4.87%

CMT2 840.94 19.37 934.69 19.14 15 11.15%

CMT3 827.39 16.89 887.61 16.73 5 7.28%

CMT4 1055.00 22.52 1193.97 22.42 20 13.17%

CMT5 1401.94 29.30 - - - -

CMT11 1043.65 36.67 1440.60 26.86 10 38.03%

CMT12 819.56 23.36 - - - -

Note: s: CVPR solution achieved by ASO;   : rmax - rmin  of CVPR solution achieved by ASO; ε: the threshold 
values of equity measurement; TD: total travel distance of VRPRB;   : rmax - rmin  of the solution of VRPRB; 

v: the weight of equity measurement when the solution is achieved; dir: distance increment ratio, .

Table 2. The results of ASO on the route balancing problem
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Table 4 lists the smallest (rmax - rmin) and other af-
filiated information found during the parameter anal-
ysis. The process can be observed to reduce the (rmax 
- rmin) to a pretty little value with increasing total travel 
distance. It can also be discerned that the minimal 
(rmax - rmin) is not necessary to occur when μ=3. That 
means bigger values of μ and v do not guarantee bet-
ter balance routes but have a higher probability of 
obtaining one.

From the above experiments, we can find that 
while the threshold ε is getting bigger, indicating the 
balance restriction is more relaxing. That implies the 
travel cost is getting bigger as well; on the other hand, 
the shifts for workers are more balanced. It is a trade-
off between cost and workers’ satisfaction. According 
to Figure 2, the shifts can be almost the same among 
the workers in the case with a higher cost (586.84) 
for CMT1. It is possibly more beneficial to choose 

the costly case instead of the inexpensive cases be-
cause the workers’ satisfaction is high. The managers 
should determine the dispatching scheme between 
low-cost and possibly unsatisfied workers.

5.3: the relationship between rmax - rmin, v 
and μ

We further apply the regression analysis to ex-
amine how (rmax - rmin) varies with v and μ since it is 
challenging to conclude their relation by plotting re-
sults. Equation (24) represents our regression model, 
where β0 to β4 are parameters and ε is the error term. 
After graphing our previous results, we assume a 
semi-log functional form; that is, we transform rmax 
- rmin to ln(rmax - rmin)  as our dependent variable val-
ues. The independent variables include v and a set 
of dummy variables, Dummy1, Dummy2, and Dum-

CMT1 CMT2 CMT3 CMT4 CMT5 CMT11 CMT12

μ 2 2 0 1 3 1 3

v 34 48 31 25 45 5 18

s 524.61 840.94 827.39 1055 1401.94 1043.65 819.56

TD 586.84 946.51 978.89 1196.94 1594.72 1470.19 957.17

dir 11.86% 12.55% 18.31% 13.45% 13.75% 40.87% 16.79%

20.07 77.49 67.55 90.09 117.19 146.67 93.43

0.28 4.43 1.65 9.51 24.51 2.86 3.38

ratio 1.40% 5.72% 2.44% 10.56% 20.91% 1.95% 3.62%

Note: ratio= ( / )*100%

Table 4. Solutions for minimizing max-min

Figure 2. Relationships between route distance and the (rmax - rmin) of CMT1



60 Huang et al.

International Journal of Industrial Engineering and Management Vol 14 No 1 (2023)

my3, for μ equals 1, 2, and 3, respectively, to reveal 
intercept deviation from the base, as μ equals 0. This 
model assumes a fixed slope of v, but allows inter-
cept to vary with different values of μ. If the estimated 
coefficients are negative/positive, this shows that for 
any given v, a non-zero μ will generate a smaller/
larger (rmax - rmin). Table 5 shows our estimation re-
sults. The estimated coefficient of v is negative and 
significant, meaning that as v gets bigger, (rmax - rmin) 
gets smaller, and our previous solutions statistically 
support this relation. Coefficients for the Dummy1, 
Dummy 2, and Dummy 3 are all negative, indicating 
that the use of parameter μ will reduce the value of 
(rmax - rmin) comparing to the base when μ equals 0; 
however, the hypothesis test shows the reduction of 
objective function value by non-zero μ values is not 
statistically significant. 

(24)

Although Table 5 shows an insignificant influence 
of μ to (rmax - rmin) for given ν, it is possible to observe 
a clear impact of μ if we apply a more flexible func-
tional form, allowing the relationship to change in a 
higher ν situation. We use ν =20 as a cutting point. 
High is a dummy variable to indicate whether ν is 
greater than or equal to 20. Therefore, the variable 
High will equal 1 if ν ≥ 20 and 0 otherwise. We allow 
intercepts for given μ and the slope of ν to be differ-
ent if ν ≥ 20  by including intersection terms. The esti-
mation results in Table 6 show that the slope of ν will 
be flatter when ν ≥ 20  since the slope is from -0.0757 
change to -0.0093, indicating a statistically significant 
but weakened influence when ν becomes higher. We 
observe that a non-zero μ will, on average, produce 
a better solution compared to μ =0 case when ν ≥ 20 
and is statistically supported when μ equals 2 and 3.

6. Conclusion and future research

This study proposed a hybrid algorithm, ASO, 
to solve the Vehicle Routing Problem with route 
balancing. The solving process has been applied to 
the benchmark instances CMT1-5, 11, and 12 to 
examine the performance. We solved the VRPRB 
by combining the total travel distance and the eq-
uity measurements as the objective function so that 
the travel distance and equity measurements can be 
optimized simultaneously. The parameters μ and ν 
are used to adjust the weights of the equity measure-
ments in the objective function. The output results 
show that the proposed algorithm can provide prom-
ising solutions.

The goal of this research is to figure out the bal-
ance point between the total travel distance and the 
range, i.e., rmax - rmin. A specific amount of solution 
quality must be sacrificed to obtain better balance 
routes. Other researchers might concentrate on 
minimizing the (rmax - rmin) such as Borgulya [19]. The 
(rmax - rmin) can be as small as 0.03, taking CMT1 as 
an example, but the total travel distance is more than 
three times of best solution. On the contrary, this 
proposed solving process can diminish the equity 
measurement to 0.28 (CMT1); however, the travel 
distance increment ratio is just 11.13%. Thus, it is 
undoubtedly a trade-off issue for management to de-
termine how much cost is allowed to exchange for 
balanced routes. 

Using the total travel time as the objective func-
tion may be more realistic than the total travel dis-
tance while handling the VRPRB. Thus, it is worth 
modifying the objective function to be the total work-
ing time in future works. Also, other equity measure-
ments, such as the average sum of relative imbalance, 
can be used to estimate the route balance. We can 
add these measurements to the objective function 

Variable Coefficient Standard error t p-value

v -.0523 .004622 -11.31 0.000

Dummy1 -.1000 .114025 -0.88 0.383

Dummy2 -.0532 .106288 -0.50 0.618

Dummy3 -.0993 .110694 -0.90 0.372

intercept 2.3898 .102481 23.32 0.000

R2 0.5664

F 33.02

Prob > F 0.0000

Table 5. Examine the relation of (rmax - rmin) and  v for various μ
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to see whether better-balanced routes can be found 
in the future. Furthermore, it is interesting to know 
how the proposed method yields while tackling more 
complex VRP instances. For example, balancing the 
VRPs with different situations, such as time windows, 
pickup & delivery, could be good research directions.
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