
Deep Learning Approach for Volume Estimation in 
Earthmoving Operation

1. Introduction

Major civil engineering projects include earthmov-
ing activities, which have long been the focus of re-
search into predicting their output before starting site 
work. Calculating the quantity of earth transported by 
dump trucks is necessary for tracking the productiv-
ity of earthmoving operations and for financial settle-
ments among earthmoving companies. Counting the 
number of loaded trucks and weighing loaded trucks 
on a scale station are two popular approaches for es-
timating earthmoving volume by vehicles or trucks; 
however, these procedures are prone to errors, take 
a long time, and are expensive. Furthermore, owing 

to intra-class variability in how construction tasks are 
generally performed and the length of each work step, 
it is often essential to record many cycles of opera-
tions in order to generate a comprehensive analysis 
of operational efficiency. Traditional time studies are 
not only time-consuming, but they also need a sub-
stantial amount of time spent on manually process-
ing data. Because of the physical limits or biases of 
the observer, the repetitious data processing process 
might also deteriorate the quality of the procedure. 
It is not feasible to interpret the relation between ac-
tivity duty cycles and productivity, or fuel usage and 
emissions, without a complete activity analysis. Sev-
eral techniques have been devised to produce such 
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estimations, with varying degrees of effectiveness [1]. 
Monthly billing data, monthly peak load measure-
ments, the transformer's peak load analysis [2], and 
existing diversified load curves [3] may all be used 
to estimate loads. Several strategies have been used 
to model radial networks, including neural network 
and fuzzy load estimates [4], sensitivity-based zonal 
methods [5], [6], and a real-time distribution circuit 
load modeling strategy based on stochastic load mod-
els [7].

 With the development of computer vision tech-
nology, detection of vehicle types through image 
processing and pattern recognition has been widely 
used [8]. The vehicle classification system based on 
machine vision can be embedded in current traffic 
cameras. It has many advantages, such as convenient 
installation, easy maintainability, and small areas of 
occupation. Besides, the data obtained from the sys-
tem can be used for research and process for other 
purposes. With the rapid advancement of the graph-
ics processing unit (GPU), the computing power for 
image processing has been greatly enhanced, which 
also in turn brought the fast advancement of deep 
learning. Compared with traditional feature extrac-
tion algorithms, deep learning has a better adapt-
ability and universal applicability. In recent years, the 
technology of deep learning has been successfully 
applied to the segmentation, detection, and recogni-
tion of objects in images and videos, such as face and 
pedestrian recognition [9].

 This study aims to estimate the earth volume with 
high accuracy in real time by using photo images 
of trucks taken from different distances and angles. 
To achieve the goal, we will develop deep learning 
models that classify the images into different volume 
levels. First, we will begin with a basic convolutional 
neural network (CNN) with one convolutional layer. 
Next, we will train a complex, pre-trained deep CNN 
with our images in order to improve the classification 
performance. Particularly, we will use a popular pre-
trained model, VGG16 [10], to obtain a network that 
can learn complex patterns from the images; transfer 
learning (TL) will be applied to train the complex 
classification model with our truck images prompt-
ly. For evaluation of the approach, the models will 
be trained and tested by using images of miniature 
trucks loaded with different amounts of earth, rang-
ing between 0 and 1000 ml up to six classes at 200 ml 
intervals. We expect that the deep learning models 
based on CNN will be effective because of their abil-
ity to extract high-level features, such as edges and ar-
eas, from the input images that are valuable for accu-
rate prediction. Compared to traditional techniques 

for earth volume estimation, which require manual 
work and weighing station, the proposed approach 
will be cost-effective by automating the process and 
providing real time feedback.

The rest of this paper is organized as follows. 
Section 2 presents the research works related to this 
research. In Section 3, models of volume classifica-
tion based on CNN with one convolutional layer and 
a pre-trained deep CNN with transfer learning are 
proposed. The proposed methods are evaluated and 
analysed by the experiments in Section 4. Finally, 
Section 5 draws the conclusion of this research.

2. Literature Review

Various traditional and artificial intelligence 
(AI)-based models have been presented in literature. 
A vision-based activity identification framework was 
designed that focused on excavators and dump trucks 
working together with the four key modules: equip-
ment tracking, individual equipment action recogni-
tion, interaction analysis, and post-processing [11]. 
The experimental findings confirmed not only the 
viability of the suggested strategy but also the statisti-
cal significance of the interaction analysis. One of the 
main tools used in earthmoving activities are dump 
trucks [12]. A detection technique for mining truck 
loading volume based on deep learning and image 
recognition had been proposed [13]. The objective 
was to integrate artificial intelligence technology and 
image identification technology into the detection of 
mining truck loading volume. The images were pre-
classified using the VGG16 deep neural network 
model, and the classification results were shown 
along with the possibility of each category. A machine 
vision technique to determine the volume of rock 
mixture was proposed [14]. The highly challenging 
nickel mineral system was used to show a generic 
machine vision technique for on-line load determi-
nation of rock mixtures. An optimization model that 
utilized genetic algorithms, linear programming, and 
geographic information systems for earthmoving ac-
tivities was presented [15]. In this paper it had been 
stated that, in order to determine whether a truck 
was full or empty and how many trucks there were, 
overall truck number counting (OTC) relied only on 
human inspection. Since full load was judged by the 
human eye, the approach might contain inaccura-
cies that caused contractors to incur a significant loss 
since the method didn’t give a realistic quantity. 

Recently, deep learning models, particularly 
CNN-based models have been studied in various im-



43Alam et al.

International Journal of Industrial Engineering and Management Vol 14 No 1 (2023)

age classification applications. An autonomous CNN 
architecture was suggested based on evolutionary al-
gorithms for image classification [16]. A new meth-
od was suggested for improving a weight-smoothing 
constraint neural network (WSCNN) and a weigh-
ing method for a truck scale based on WSCNN [17]. 
According to the test results, the weighing mistakes 
of the truck scale with WSCNN were considerably 
smaller than those of the neural network-based mod-
el of the nonlinear system by implementing the pro-
posed data induction approach. An artificial neural 
network (ANN) model was developed that used ba-
sic predictors to forecast the condition level of earth-
moving vehicles [18]. The model's performance was 
compared to the predictive accuracy of discriminant 
analysis (DA). The model's predicted accuracy was 
greater than 94 percent, according to the validation 
procedure. A computer vision-based algorithm was 
demonstrated for detecting single actions of earth-
moving construction equipment [19]. For a given 
video collected from various angles, scales, and illu-
minations, the model distinguished specific motions 
of the construction equipment. A vehicle classifica-
tion approach using a pre-trained deep model such 
as VGG16 was implemented to pre-train the deep 
model with efficiency-oriented system settings and to 
increase the chance of using the model in minimum-
capacity datasets by optimizing over-fitting limits [20]. 
A vehicle make and model recognition (VMMR) 
framework was proposed based on deep feature ex-
traction from VGG16 model, followed by the feature 
reduction and classification [21]. Deep features were 
extracted from the image of the vehicle through the 
layers of VGG16. The suggested algorithm has an 
automated feature that works for image classifica-
tion without domain knowledge. A framework was 
proposed that includes field monitoring systems and 
sight deep learning for full/empty-load truck categori-
zation [22]. The proposed framework's fundamental 
model was evaluated for practicality and recognized 
for model selection recommendations in potential 
field earthmoving quantity statistics implementation. 
Deep learning algorithms' major drawbacks include 
their dependency on a large number of training imag-
es and the need for appropriate deep network archi-
tecture optimization. These problems were resolved 
by transfer learning and the VGG architecture was 
made more suitable for multi-classification problems 
[23]. A novel technique was provided for layer-wise 
tuning, and image classification was used to identify 
the data slices that were the most useful. To reliably 
distinguish construction equipment, a deep CNN 
trained by transfer learning was proposed, which in-

volved transferring the knowledge of models learned 
in other domains with a huge quantity of training data 
to the construction sector [24]. The fundamentals of 
CNNs, including a discussion of the many layers that 
were employed by using traffic sign identification as 
an example, were explained by [25]. They described 
the constraints of the general problem and introduced 
methods and implementation software created to at-
tain the greatest performance on a “labeled” dataset. 
Transfer learning was implemented to fine-tune the 
parameters of the pre-trained network (VGG19) for 
image classification tasks [26]. All these studies show 
the potential of deep learning models trained by 
transfer learning in various image classification tasks, 
which is in line with our research. 

The previous studies presented the frameworks 
which were implemented to classify the full/empty 
load of earthmoving trucks under a certain scenario. 
Moreover, in the previous works the images were 
not pre-processed enough to extract truck informa-
tion in advance to recognize the load weight of the 
trucks. In our work, the models were developed 
to classify multiple classes of different amounts of 
earth, and they were able to achieve good perfor-
mance by applying the pretrained deep CNN with 
transfer learning.

3. Methodology

3.1 Deep Learning - Convolutional Neural 
Network

Artificial neural networks are algorithms inspired 
by the structure and function of the brain. These 
neural networks attempt to simulate the actions of 
the human brain-albeit far from matching its ability-
allowing it to “learn” from large amounts of data. 
While a neural network with a single layer can still 
make approximate predictions, additional hidden 
layers can help to optimize and refine for accuracy. 
It drives many artificial intelligence (AI) applications 
and services that improve automation, performing 
analytical and physical tasks without human interven-
tion. The methods are representation-learning meth-
ods with multiple levels of representation, obtained 
by composing simple but non-linear modules, each 
of which transforms the representation at one level 
(starting with the raw input) into a representation at a 
higher, slightly more abstract level. 

Deep learning allows computational models that 
are composed of multiple processing layers in depth 
to learn representations of data with multiple levels 
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of abstraction. Deep learning is a subset of machine 
learning, which is essentially a neural network with 
three or more layers. Deep learning eliminates some 
of the data pre-processing that is typically involved 
with machine learning. This algorithm can ingest and 
process unstructured data, like text and images, and 
it automates feature extraction, removing some of the 
dependency on human experts.

 The proposed deep learning model is developed 
in six main steps as shown in Figure 1: collecting data, 
choosing the model, building the model, training the 
model, evaluating the model, and making prediction.

3.1.1 Collecting Data

We included numerous images of the same load 
that were captured from diverse views and angles 
which were of different shapes and distributions in 
the body. Some images had earth in cone shapes 
while others did in flat, inclined or irregular shapes. 
For developing the models, images were obtained 
from a miniature truck which has the identical fea-
tures as a real scaled dump truck. The miniature 
truck was loaded with different amounts of earth, 
ranging between 0 and 1000 ml, up to six classes at 
200 ml intervals shown in Table 1. To make the ex-
periment more realistic, photos were taken at differ-
ent places and angles at different times of the day, 
so the different lights and backgrounds would be 
used within the dataset. Two types of fill materials 

were used: sand (store-bought) and soil (from the 
backyard). However, the light was set to the natural 
sunlight, and the background and fill material colours 
were always set to the same tone. Images were col-
lected at six different load levels, approximately 400 
images for each. The images of each class have been 
illustrated in Figure 2. With the camera held in the 
landscape orientation for each image taken, the angle 
and the height were not fixed as long as all borders of 
the dump truck were within the camera image.

3.1.2 Choosing the Model

3.1.2.1 A CNN with One Convolutional Layer

First, for the experiment, a CNN model with one 
convolutional layer was chosen, which is the smallest 
unit of a deep neural network. In this model, seven 
layers are used to create a simple CNN as depicted 
in Figure 3 below. The details of each layer are as 
follows. Image input layer is where the image size 
is specified. For this model, the image size is speci-
fied as 224x224x3. Convolutional 2D layer is where 
the filter size and number of filters are specified. In 
this model, the filter size is specified as 3x3 with the 
number of filters as 64. ReLU layer, also known as 
the rectified linear unit, is one of the most common 
activation functions. Max pooling 2D layer is a down-
sampling operation that reduces the three-dimen-
sional size of the feature map and removes three-
dimensional information noises. Down-sampling 
enables the network to increase the number of filters 
in deeper convolutional layers without increasing the 

Figure 1. Deep Learning Methodology

Figure 2. Images of dump trucks for 200ml, 400ml, 600ml, 800ml, 1000ml, and empty loads

Volume Number of Images

200 ml 437

400 ml 478

600 ml 395

800 ml 373

1000 ml 393

Empty 441

Table 1. Number of Images for Each Case
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required number of computations per layer. In this 
model, the size of the rectangular region is [2,2] with 
a stride of 2. Fully connected layer combines all the 
features learned by the previous layers across the im-
age to identify the larger patterns. The output size, 
which is equal to the number of classes, is specified 
in this layer. The number of classes varies between 
2 and 6 in this study. Softmax layer is chosen as an 
activation layer that normalizes the output of the fully 
connected layer. Classification layer is the final layer 
that uses the probabilities collected from the softmax 
activation function for each input to allocate the input 
to one of the similarly exclusive classes and compute 
the loss. 

3.1.2.2 A Pre-trained Network with Transfer Learning

Liu et al. [21] has reported that the pre-trained 
network named VGG16 worked fast in terms of 
training and testing/validation time while it also had 
a high testing/validation accuracy in determining 
whether a truck is empty or fully loaded. Since the 
result was promising, VGG16 is selected as the pre-
trained network in this study. VGG16 is a deep CNN 

model that has been developed for the ImageNet 
competition. It was pre-trained with the large-scale 
ImageNet dataset. In order to apply it to estimation 
of earthmoving, transfer learning (TL) is required to 
extract features from the truck load images and fine-
tune the pre-trained network for classification of the 
truck load images. TL is a machine learning method 
to train an existing model, which has been trained for 
another classification problem, to learn for a new clas-
sification problem through the transfer of knowledge 
that has already been learned from the old problem.

 VGG16 is composed of 16 layers with learnable 
weights but 41 layers in total. Figure 4 shows the over-
all architecture of the VGG16.

3.1.3 Building the Model

The deep learning model with transfer learning 
is built based on a pre-trained network architecture 
(VGG16) with layer replacement. The models are 
developed in the following steps as shown in Figure 
5: loading and exploring image data, specifying or 
partitioning the dataset into training and validation 
sets, defining network architecture, specifying train-
ing options, training the network, classifying valida-
tion images and computing the accuracy.

The architecture begins with the image input lay-
er, followed by five convolutional groups and three 
fully connected layer groups, and ends with the clas-
sification layer as the output. The details of each layer 
group are as follows:

Figure 3. A CNN with One Convolutional Layer

Figure 4. VGG-16 Model Architecture 
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 The image input layer is where the image size is 
specified. For this network, the image size is speci-
fied as 224x224. The first two convolutional groups 
include two convolutional 2D layers each followed 
by a ReLU layer, while the following three convo-
lutional groups include three convolutional 2D lay-
ers each followed by a ReLU layer. Convolutional 
groups are separated from each other by max pool-
ing layers. The convolutional 2D layer is the layer 
where the filter size and the number of filters are 
specified. In this network, the filter size is set to 3x3 
while the number of filters is specified as 64, 128, 
256, 512, and 512, respectively, for each of the five 
convolutional groups. For the max pooling 2D layer, 
the size of the rectangular region is [2,2] with a stride 
of 2.

 The first two fully connected layer groups include 
one fully connected layer, each followed by a ReLU 
layer and a dropout layer, while the last fully connect-
ed group includes one fully connected layer followed 
by a softmax layer. The dropout layer randomly sets 
input elements to zero with a given probability. In 
this network, both dropout layers have a dropout 
probability of 0.5. In the output layer, the number of 
output classes of the network varies from 2 to 6.

3.1.4 Training the Model

The model is trained to predict the true class 
among the 6 classes of the earth volume in the dump 
truck. To train the network for this classification 
task, the stochastic gradient descent with momentum 
method was selected along with a set of training pa-
rameters, including learning rate, validation frequen-
cy, and mini batch size, obtained by a grid search. 
From the original dataset, 75% of the data are used 
for training and the remaining 25% of the data for 
validation.

3.1.5 Evaluating the Model

Overfitting occurs when a statistical model or ma-
chine learning algorithm captures the noise of the 
data. Intuitively, it happens when the model or the 
algorithm fits the data too well. Overfitting results in 
a model with a high accuracy for the training dataset 

but poor results on new datasets. Such a model is not 
of any use in the real world as it is not able to predict 
outcomes for new cases, particularly in cases where it 
is applied. When it comes to evaluating a model, ac-
curacy and other classification performance measures 
on a separate dataset must be considered for validat-
ing and assessing the effectiveness of the model. In 
this study, not only accuracy but also precision, recall, 
and F1 score will be used as performance measures.   

3.1.6 Making Prediction

Once the training is completed, the trained net-
work can be used to predict or estimate the classified 
volume for input images from a camera. The predic-
tion performance on a new dataset indicates a better 
approximation of how the model will perform in the 
real world. The models were tested by using a new set 
of images of the six classes.

4. Experimental Results

Images for training have been collected from the 
six classes as shown in Table 1. In pre-processing the 
data, the collected images were scaled and resized to 
fit the requirements of the pre-trained network mod-
el. All images were cropped to a square, 1700x1700 
pixels and then resized 224x224 as required by 
VGG16. For training, learning rate, validation fre-
quency, and mini batch size were set to 0.0001, 10, 
and 30, respectively.

4.1 Experimental Results from CNN with One 
Convolutional Layer

The simple CNN model for volume classification 
was tested in five scenarios, from 2 classes (i.e., 1000 
ml vs. empty) to 6 classes where the volume changed 
from 0 to 1000 ml at 200 ml intervals. Table 2 shows 
the results obtained for the five scenarios, including 
the classification accuracy and training time. The 
table also contains training parameters obtained by 
a grid search, including validation frequency, maxi-
mum number of epochs for training, and mini batch 
size.

Figure 5. Model Building Procedure
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 The experimental results show the accuracy of 
the model was 95.78% for 2 classes, 30.83% for 3 
classes, 23.49% for 4 classes, 18.27% for 5 classes, 
and 15.57% for 6 classes. The results show that the 
simple CNN is not capable of learning patterns in 
complex scenarios with more than 2 classes, which 
calls for more complex networks. 

4.2 Experimental Results from Pre-trained 
Network with Transfer Learning

The pre-trained VGG16 with transfer learning for 
volume classification was tested in the same five sce-
narios, from 2 classes to 6 classes. Table 3 shows the 
results along with the training parameters obtained by 

Scenario Classes Number of 
Images

Validation 
Frequency Max Epochs Minibatch Size Train 

Validation Accuracy Training Time

2 
Classes

1000ml 314
5 10 10 75%-25% 95.78% 3 min 55 sec

Empty 352

3 
Classes

200ml 348
5 10 10 75%-25% 30.83% 10 min 52 sec600ml 316

10000ml 314

4 
Classes

200ml 348

5 10 10 75%-25% 23.49% 13 min 8 sec
600ml 316
1000ml 314
Empty 352

5 
Classes

200ml 348

5 10 10 75%-25% 18.27% 19 min 28 sec
400ml 382
600ml 316
1000ml 314
Empty 352

6 
Classes

200ml 348

5 10 10 75%-25% 15.57% 28 min 33 sec

400ml 382
600ml 316
800ml 298
1000ml 314
Empty 352

Table 2. Experimental Results from CNN with One Convolutional Layer

Scenario Classes Number of 
Images

Validation 
Frequency Max Epochs Minibatch Size Train 

Validation Accuracy Training Time

2 
Classes

1000ml 314
10 30 30 75%-25% 100% 13 min 48 sec

Empty 352

3 
Classes

200ml 348
10 30 30 75%-25% 99.18% 13 min 1 sec600ml 316

10000ml 314

4 
Classes

200ml 348

10 30 30 75%-25% 97.89% 56 min 37 sec
600ml 316
1000ml 314
Empty 352

5 
Classes

200ml 348

10 30 30 75%-25% 91.80% 50 min 41 sec
400ml 382
600ml 316
1000ml 314
Empty 352

6 
Classes

200ml 348

10 30 30 75%-25% 88.38% 85 min 2 sec

400ml 382
600ml 316
800ml 298
1000ml 314
Empty 352

Table 3. Experimental Results from Pre-Trained Network Model
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a grid search. The experimental results show the ac-
curacy of the model was 100% for 2 classes, 99.18% 
for 3 classes, 97.89% for 4 classes, 91.80% for 5 class-
es, and 88% for 6 classes. The results show that the 
pre-trained network is capable of distinguishing be-
tween the six classes. Although training time for the 
pre-trained network is much longer than that for the 
simple CNN, the times are reasonable and shortened 
significantly by transfer learning. 

After training is completed, the trained network 
was tested with additional datasets. Table 4 shows the 
result of this deployment test, which is very promis-
ing with an error rate less than 5% for 6 classes sce-
narios. In addition, root mean squared error (RMSE) 
and normalized RMSE (NRMSE) of each scenario 
are presented in Table 4 to show the estimated nu-
merical error.

In addition, the classification performance of the 
pre-trained network with transfer learning was evalu-

ated by precision, recall, and F1 score, which are de-
fined as follows:

(1)

(2)

(3)

where TP = true positive, TN = true negative, 
FP = false positive, and FN = false negative. All the 
classes against each other for each case have been 
compared, resulting in the pairwise comparisons, us-
ing the three metrics. The results for each case are 
presented in Table 5. 

To sum up, the experimental results showed that 
the pre-trained CNN with TL was able to recognize 
all 2 classes truckload in the dataset with 100% of ac-

Scenario Classes Number of Images Number of Misclassified 
Images Error Rate RMSE NRMSE

2 Classes
1000ml 79 0

0% 0 0
Empty 89 0

3 Classes
200ml 89 1

2.02% 56.91 0.071600ml 79 4
1000ml 79 0

4 Classes

200ml 89 9

4.76% 66.37 0.066
600ml 79 6
1000ml 79 1
Empty 89 0

5 Classes

200ml 89 5

3.44% 40.82 0.041
400ml 96 8
600ml 79 2
1000ml 79 0
Empty 89 0

6 Classes

200ml 89 2

4.96% 49.45 0.049

400ml 96 8
600ml 79 11
800ml 75 2
1000ml 79 2
Empty 89 0

Table 4. Deployment Test Results by Pre-Trained Model

Scenario Recall Precision F1-Score

2 Classes 100% 100% 100%

3 Classes 98.01% 98.13% 98.04%

4 Classes 95.45% 95.47% 95.35%

5 Classes 96.59% 96.70% 96.60%

6 Classes 94.92% 95.05% 94.90%

Table 5. Additional Deployment Test Results by Pre-Trained Model
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curacy and above 90% of accuracy for the cases of 
up to five classes. For the case of 6 classes, the CNN 
performed reasonably with an accuracy close to 90%. 
One thing to note is that the number of iterations 
in training is directly proportional to the number 
of images and epochs. As the number of iterations 
increases, so does the time required for the system 
to complete the training. In addition, the training 
time usually took longer as the number of classes in-
creased as shown in Table 3 e.g., 13 min 48 sec for 
two classes and 56 min 37 sec for four classes. In 
our experiments, however, the training time for the 
most complex scenario (six classes) took 85 min 2 
sec (in a machine with Intel(R) Core(TM) i9-9900K 
CPU @3.60GHz), 32 GB RAM, and an NVIDIA 
GeForce RTX 2080 GPU with 8 GB) and the testing 
time was only 2 sec, which shows that the proposed 
model can be trained in a reasonable time and de-
ployed for earth volume estimation in real-time.

5. Conclusion

On construction sites, the present techniques for 
estimating the earth volume in dump trucks may be 
expensive or incorrect, while taking up a significant 
amount of time and effort. This research aimed to 
overcome these problems with two different meth-
ods: a simple CNN with one convolutional layer and 
a pre-trained deep CNN with transfer learning. The 
CNNs classified the amount of the load in a dump 
truck via photo images by extracting informative fea-
tures from the images. 

 As mentioned earlier, numerous images of the 
same load with different shapes and distributions 
were used for the experiments where some images 
showed the earth in cone shapes while others in flat, 
inclined, or irregular shapes. The network trained by 
many such images and ground-truth labels should 
be able to obtain features that help to estimate the 
(3D) load from the 2D photo images. The results 
clearly showed that the pre-trained CNN with trans-
fer learning performs significantly better than the 
simple CNN. The CNN with one convolutional layer 
worked well only for the two classes scenario. How-
ever, it performed poorly for the rest of the scenarios 
with more than two classes. The pre-trained deep 
CNN with transfer learning showed promising results 
for every scenario that could properly estimate earth 
volume in trucks without the need for a scale, ad-
dressing the drawbacks of present approaches. This 
could minimize the expense or inaccuracy associ-
ated with earthmoving volume, as well as optimize 

the overall number of trucks utilized in earthmoving 
operations, particularly for large construction sites. 
With this model, the validation accuracy was more 
than 90% for up to 5 classes scenario and 88% for 
6 classes scenario. Additionally, the deployment test 
results showed an error rate less than 5% in every sce-
nario. The experiments also showed that the number 
of images and epochs is directly proportional to the 
number of iterations. Additionally, as the number of 
iterations increased, so did the amount of time re-
quired for the system to finish the training. Another 
finding was that if the volume difference between 
the classes is reduced, classification would become 
more challenging and hence take longer. Although 
the experiments had been conducted with insuffi-
cient images to train such a network, our network was 
validated by the validation results and it was possible 
due to using the pretrained network (VGG). The per-
formance could be further improved by training with 
more images with various shapes and views.

 We will train the proposed deep CNN by using 
more labelled-image datasets from the actual con-
struction sites to refine the network model to obtain 
better test results. The model will be deployed on 
the construction sites and utilize images captured by 
a camera to estimate earth volume in real time. To 
achieve the goal, the proposed model would need to 
be trained and tested with actual images that contain 
not only the earth but also debris of different types of 
materials such as rocks, concrete, gravel, etc., which 
would make earth volume estimation more accurate 
yet challenging. Also in the future, we can implement 
Regression in Edge Impulse to train our model. Re-
gression models may be trained with the images and 
show a predicted weight since they can learn to take 
in any sort of input and return a numeric output.
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