
Time series based forecasting methods in 
production systems: A systematic literature review

1. Introduction

Digitalization and its use cases transform the in-
dustrial and production-oriented sectors worldwide 
[1-3]. In this regard, large-scale initiatives, such as In-
dustry 4.0 and Made in China 2025, are concerned 
with the widespread adoption of advanced technolo-
gies and concepts, whereas several key research top-
ics are commonly found throughout the literature [3, 
4]. These topics are manifold and consist of the in-
ternet of things, cyber-physical systems, and big data 
applications, among others [5]. As a result of techno-

logical advancements in the context of digitalization, 
data are generated and available in an unprecedented 
magnitude and can be used to increase the efficiency 
of organizations [6].

In this regard, production-oriented companies 
employ data-driven approaches to a varying degree 
and in different contexts. Consequently, several (sys-
tematic) literature reviews were conducted to deter-
mine the state-of-the-art and future study directions 
to support researchers and practitioners in the pro-
duction area, whereas two main objectives can be de-
rived. On the one hand, existing systematic literature 
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reviews (SLRs) are focused on the applicability of 
general concepts, such as the usage of artificial intel-
ligence (AI) and machine learning (ML) for digital 
twins in a wide range of industries [7] and potential 
applications for deep reinforcement learning [8] and 
machine learning [9] in manufacturing systems. The 
latter found that ML can be employed to increase ef-
ficiency in a wide area of applications, ranging from 
quality optimizations to fault diagnosis. 

On the other hand, available literature reviews 
are conducted to identify state-of-the-art methods for 
specific applications or problems, such as predictive 
maintenance for industrial assets [10, 11], prediction 
and optimization of the drilling rate in oil/gas drillings 
[12], optimization of production processes [13] and 
mechanical fault diagnosis and prognosis in industrial 
manufacturing [14].

Even though manufacturing systems are usually 
characterized by non-linear and time-varying depen-
dencies [14] and specific data-driven applications re-
quire not only a prediction of the current state, but 
also of future behavior [10, 11, 13], no dedicated 
review of state-of-the-art methods for forecasting in 
dynamical production systems exists to the best of 
our knowledge. Therefore, this work attempts to 
close this gap via a SLR focused on data-driven ap-
proaches for time series data to anticipate the per-
formance of production systems, regarding quality, 
efficiency, and yield. Consequently, this paper is 
situated between SLRs focusing on the applicability 
of general concepts [7-9] and SLRs identifying state-
of-the-art methods for specific applications [10-14], 
thus, complementing related work and contributing 
to the scientific discourse. Moreover, this SLR is not 
limited to production lines in the manufacturing do-
main but is concerned with production systems in 
general. Hence, other domains, for instance, oil or 
energy production are equally relevant for this SLR. 
This is due to the fact, that these systems are based 
on mechanical components and therefore have simi-
lar characteristics, which can be used to derive new 
information in a broader context. Furthermore, this 
paper is focused on ML models as well as statistical 
models.

The remaining part of this paper is structured as 
follows. In Section 2 the background of data-driven 
methods with different learning types and tasks are 
outlined. Section 3 describes the methodology of the 
SLR and its review protocol, whereas Section 4 evalu-
ates literature sources and presents the results. Sec-
tion 5 discusses the implications of the findings and 
Section 6 concludes this paper with future research 
directions.

2. Background of data-driven models

Before the SLR can be conducted, it is necessary 
to establish a common understanding of the research 
context. Different technologies and concepts, such 
as the internet of things and cyber-physical systems, 
facilitate the implementation of data-oriented appli-
cations and lead to significant opportunities for the 
industrial sector through data-driven techniques [6].

Generally, these data-driven techniques can be 
divided into statistical and machine learning models 
[12,15-18]. Statistical approaches are characterized 
by pre-selecting a model architecture for an investi-
gated system, such as a linear regression with coeffi-
cients for each input feature [12, 15]. The data is used 
to estimate the parameters of the model to infer the 
relationships within the system [18]. Examples of sta-
tistical methods are linear regression, logistic regres-
sion, and principal component analysis [12, 16, 17].

In contrast to that, methods in the field of machine 
learning generally do not require a pre-selected model 
which determines the structure of the relationships 
but identify these aspects in an iterative learning pro-
cedure [18]. In other words, these approaches do not 
assume a priori specific mechanisms and structures 
within the investigated system. In that sense, machine 
learning is considered to be an algorithmic model-
ing approach [12, 15]. Examples of machine learn-
ing methods are decision tree, random forest, and 
support vector machine [16, 17]. Furthermore, even 
though there is no commonly used categorization of 
Bayesian techniques (statistical models [16], ML [17], 
separate Bayesian category [18]), the present SLR 
considers Bayesian techniques as ML methods, due 
to their iterative nature. However, although neural 
networks and deep learning represent a subfield for 
ML, its increasing popularity and success lead to a 
separate consideration to determine the current state-
of-the-art of these specific approaches [11, 19].

2.1 Learning Types

Since the objectives of data-driven applications 
vary notably among different use cases, available algo-
rithms focus on a diverse set of goals. Consequently, 
data-driven algorithms can be divided into four main 
learning types, as represented in Figure 1 [9, 14, 20, 
21]. In this regard, supervised learning requires la-
beled data sets as input, thus, the target variable must 
be available, whereas the relationship between one or 
more features (independent variables) and the target 
variable (continuous or discrete) is learned [9, 16, 20].
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In contrast to supervised learning approaches, 
unsupervised learning does not require labeled data 
sets. Thus, these types of algorithms cannot predict 
a continuous or a discrete value. However, unsuper-
vised methods are used to identify patterns or extract 
features within a given data set without any prior 
knowledge of target values or dependencies among 
different attributes. In this regard, unsupervised 
learning algorithms are often deployed to determine 
similar data points (clustering), whereas the main dif-
ference in classification techniques is the absence of 
a target variable [20-22].

Even though supervised learning algorithms often 
lead to more accurate results in comparison to un-
supervised learning approaches, the cost of labeling 
these data samples might outweigh the benefits, re-
sulting in (partially) unlabeled data sets. To improve 
the performance of data-driven solutions, semi-su-
pervised approaches are used to combine supervised 
and unsupervised methods [20, 21]. For instance, 
the concept of generative adversarial networks can 
be adapted to employ semi-supervised learning tech-
niques, thus utilizing partially labeled data [23].

In addition to that, reinforcement learning rep-
resents another branch of data-driven learning. This 
technique differs significantly from previously dis-
cussed approaches since it is designed to interact with 
the environment and to consider its feedback [9, 21]. 
To achieve high-quality results, reinforcement learn-
ing takes real or simulated feedback into account and 
optimizes its predefined objective [24]. To find the 
global optimum, reinforcement methods need to ex-
plore different options, which can lead to a tempo-
rary decline in accuracy. In this regard, three main 
sub-categories of reinforcement learning exist [25]. 

These include dynamic programming, Monte Carlo 
methods and temporal difference. Importantly, the 
number of objectives in reinforcement learning sys-
tems is not limited to one. Thus, this learning type 
needs to find a compromise if multiple contradict-
ing objectives are formulated. For this purpose, algo-
rithms were introduced, which take not only imme-
diate results, but also long-term consequences into 
account [26].

2.2 Tasks

With these learning types, several different tasks 
can be accomplished, whereas commonly found 
tasks are discussed in this section. First, the generic 
task of predicting a target (dependent) variable can 
be divided into regression (REG) and classification 
(CLASS) based on the target type [9, 13]. In the case 
of the former, the data-driven model predicts a con-
tinuous target variable, for instance, the length and 
width of the final product. On the other hand, clas-
sification is concerned with classifying data samples 
based on a discrete set of target classes – e.g., fault 
detection or image classification. Supervised learning 
is mainly used for both prediction variants [27].

Second, to determine clusters (groups) of similar 
samples and representational data points, the task of 
clustering is used as an unsupervised learning tech-
nique [10]. In this regard, two clustering types can 
be distinguished. While algorithms focused on hard 
clustering (HC) are concerned with assigning one 
specific cluster to each data sample, soft clustering 
(SC) algorithms allow multiple cluster assignments 
for each sample [28]. Consequently, the latter ap-
proach accounts for uncertainties during the clus-

Figure 1. Main learning types for data-driven algorithms
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tering process, which can be utilized in subsequent 
steps, for instance classifying new data points.

Third, to improve the quality of the data set and 
to reduce computational efforts, dimensionality re-
duction is often applied as a preprocessing task [9, 
16, 29]. Thus, the main purpose is to extract (derive) 
new features or to select a subset of existing features 
(independent variables) from the data to optimize 
subsequent modeling steps. Consequently, the main 
difference between feature extraction (FE, also fea-
ture engineering) and feature selection (FS) is that 
the former calculates new features as a replacement 
for existing variables, whereas the latter is focused on 
selecting the optimal subset of the original feature set 
[29, 30]. To increase the robustness of FS, several 
selectors (homogeneous or heterogeneous) can be 
combined to form an ensemble selector [30]. Both 
tasks, FE and FS, can be accomplished by supervised 
as well as unsupervised learning techniques. The next 
section elaborates on the methodology and the re-
view protocol of the SLR in this paper.

3. Methodology

To determine the state-of-the-art of industrial 
forecasting models, a SLR was conducted. A SLR 
is a specific type of literature review to answer pre-
defined research questions in a systematic manner 
[31]. Consequently, the SLR results in reproducible 
findings which are based on a comprehensive set of 
available literature. For this purpose, research ques-
tions were formulated and the search process, as well 
as the search terms, were outlined in detail. After-
wards, literature sources were retrieved from online 
catalogs. The next steps were concerned with assess-
ing the relevance based on the screening of the titles 
and abstracts and with removing duplicated entries. 
After that, a full-text assessment was performed with 
a set of specific exclusion criteria. The last step of the 
SLR was focused on extracting relevant data fields to 
answer the research questions.

3.1 Literature review planning protocol

To assess the state-of-the-art of industrial forecast-
ing methods, the following research questions were 
defined for the SLR:

• RQ1: Which economic sectors are employ-
ing industrial forecasting models?

• RQ2: Which applications are addressed with 
industrial forecasting models?

• RQ3: Which data-driven categories (statisti-
cal, traditional ML, NN) are employed for 
forecasting in the industrial context?

• RQ4: Which data-driven categories are em-
ployed for each identified industrial forecast-
ing application?

• RQ5: Which learning types are utilized in 
forecasting models?

• RQ6: Which tasks are performed in indus-
trial forecasting scenarios?

• RQ7: Which algorithms are utilized for fore-
casting in the industrial context?

The following inclusion criteria were used to re-
fine the search process in online catalogs and were 
specified to yield publications with high actuality:

• I1: Publication year after 2017 (year > 2017).

• I2: Publication type is journal paper, confer-
ence proceeding or book.

• I3: Publication language is English.

• I4: Full text is accessible in considered online 
catalogs.

The exclusion criteria were subsequently incorpo-
rated to build the specific search query and to guide 
the initial and full-text assessment:

• E1: Not related to an industrial context.

• E2: Does not consider time series data.

• E3: Does not include forecasting models.

After a relevant subset of literature sources was 
identified through the search procedure, the follow-
ing data fields were extracted from each entry:

• F1: Domain of application.

• F2: Industrial forecasting application.

• F3: Data-driven category.                                                              
(statistical models, traditional ML models, 
neural networks models).

• F4: Types of applied algorithms.

• F5: Learning type of considered models. 
(unsupervised, supervised, semi-supervised, 
reinforcement).

• F6: Performed tasks in industrial forecasting. 
(e.g. Clustering or Feature Extraction).
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3.2 Search process

The review planning protocol serves as a founda-
tion for the search process and ensures reproducible 
findings. To find state-of-the-art literature sources, the 
search process focuses on the online catalogs of IEEE 
Xplore and ScienceDirect. Both databases were que-
ried on May 22, 2020. Corresponding categories were 
selected in ScienceDirect (review articles, research ar-
ticles, book chapters) and IEEE Xplore (books, con-
ferences, journals) to account for the inclusion criteria 
I2. Furthermore, the database search was conducted 
in the fields of title, abstract and author(-specific) 
keywords to determine relevant entries. The specific 
search query for both online catalogs consisted of four 
sub-terms, which represent individual aspects of the 
research questions to increase the relevance:

Time series AND (manufacturing OR production) 
AND 

(quality OR performance OR yield OR efficiency) 
AND (forecast OR prediction)

These sub-terms are combined with AND clauses, 
whereas one or more keywords are included in each 
sub-term, which are found to be interchangeably used 
in the literature. In this regard, the third term is par-
ticularly important, since all four keywords are used 
in an indistinguishable manner to describe the per-
formance, quality, efficiency, and yield of production 
systems. Furthermore, although there is a distinction 
between forecast and prediction, both are found syn-
onymously used in related publications.

A summarizing overview and the number of 
publications at each step of the search process are 
illustrated in Figure 2. A total of 183 relevant entries 
were found with the search query and application 
of the inclusion criteria. The actual relevance was 
initially assessed by screening the title and abstract. 
This reduced the number of considered sources by 
145, whereas the remaining 38 were checked for re-
dundancy. However, no duplicates were found, and 
all 38 sources were included in the full-text assess-
ment to determine the final relevance in a second 
iteration based on the exclusion criteria. The full-
text assessment resulted in nine excluded literature 
sources, due to a lack of relevance (see Appendix A 
for details). Consequently, 29 conference and jour-
nal papers (one relevant book chapter was excluded 
during the full-text assessment) were considered as 
input for the subsequent review and used to deter-
mine state-of-the-art approaches for industrial fore-
casting models.

4. Results of the systematic literature 
review

The systematic search process resulted in 29 lit-
erature sources, which were reviewed, and relevant 
data fields were extracted. Based on these data, the 
following sections represent the results of the SLR 
and consequently the answers to the research ques-
tions in a compressed form. Additionally, extracted 
details for each article are provided in Table 1.

Figure 2. Process of the systematic literature review
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Table 1. Extracted data fields of reviewed literature sources

Ref. F1 Domain F2 Application F3 Category F4 Algorithm F5 Learning Type F6 Task

[32] D 35.11 Yield Prediction, Fault 
Prediction NN Models LSTM Supervised REG, CLASS

[33] C 25.50 Quality Prediction NN Models MLP AE Semi-Supervised FE, REG, CLASS

[34] C 23.51 Quality Prediction Trad. ML Models Fuzzy C-means, 
SVM Semi-Supervised SC, REG

[35] C 29.10 Quality Prediction, Fault 
Prediction NN Models LSTM, B-LSTM Supervised REG, CLASS

[36] D 35.11 Fault Prediction Statistical Models ARIMA Supervised REG

[37] C 26.11 Quality Prediction, Process 
Optimization Trad. ML Models PLS, T-S fuzzy Supervised FE, REG

[38] C 24.10 Quality Prediction NN Models LSTM Supervised REG

[39] B 06.10 Process Behavior Prediction Statistical Models LR Supervised REG

[40] C 26.11 Quality Prediction Trad. ML Models PLS, T-S fuzzy Supervised FE, REG

[41] C 25.50 Fault Prediction, Quality 
Prediction Statistical Models PCA, LR Semi-Supervised FE, REG

[42] C 24.42 Process Behavior Prediction Trad. ML Models, 
NN Models

MLP, RF, RNN, 
LSTM, B-RNN, 

B-LSTM, CNN+MLP
Supervised REG

[43] B 06.10 Yield Prediction NN Models LSTM Supervised REG

[44] C 26.51 Quality Prediction NN Models MLP AE Semi-Supervised FE, REG

[45] C 24.10 Quality Prediction Trad. ML Models, 
NN Models RF-RFE, LSTM Supervised FS, REG

[46] H 51.10, 
H 52.21 Fault Prediction NN Models SLP, B-LSTM Supervised REG

[47] C 24.10 Quality Prediction Statistical Models, 
Trad. ML Models RR, RF, GBT Supervised FS, REG

[48] C 24.10 Process Behavior Prediction Trad. ML Models T-S fuzzy Supervised REG

[49] C 19.20,
C 21.10 Quality Prediction NN Models LSTM Supervised REG

[50] C 24.10 Process Behavior Prediction, 
Process Optimization Statistical Models

Holt-Winters, 
ARIMA, Heuristic, 

MA
Supervised REG

[51] B 05.10 Process Behavior Prediction NN Models GRU Supervised REG

[52] C 26.11 Quality Prediction Trad. ML Models PLS, T-S fuzzy Supervised FE, REG

[53] C 26.11 Process Behavior Prediction NN Models B-GRU AE Semi-Supervised FE, REG

[19] D 35.11 Fault Prediction NN Models CNN Supervised CLASS

[54] C 26.11 Process Behavior Prediction
Trad. ML Models,

NN Models
MARS, RF, GBT, 
NB, K-NN, SVM, 

MLP, LSTM
Supervised FS, CLASS

[55] B 06.10 Yield Prediction NN Models LSTM Supervised REG

[56] C 22.22,
C 27.90 Fault Prediction Statistical Models ARIMA Supervised REG

[57] B 06.10 Yield Prediction NN Models LSTM Supervised REG

[58] C 25.62 Fault Prediction NN Models CNN Supervised REG

[59] C 13.10 Process Behavior Prediction NN Models GRU Supervised REG
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RQ1: Which economic sectors are employing 
industrial forecasting models?

To classify the economic sector in which industri-
al forecasting models are applied, the Statistical Clas-
sification of Economic Activities in the European 
Community is used [60]. This classification is hierar-
chically structured and uses four levels. The first level 
refers to the general domain (e.g. "manufacturing" or 
"mining and quarrying"), whereas the fourth level 
of classification specifically describes the economic 
activity, such as "production of electricity" or "manu-
facture of electronic components". To associate re-
viewed literature sources with one or more economic 
activities, the context of the described applications 
was used. As a result, four domains of economic ac-
tivities applied industrial forecasting models, as sum-
marized in Table 2. A total of five literature sources 
validated their models in the "mining and quarrying" 
(B) sector, 22 sources in "manufacturing" (C), three 
sources in electricity, gas, steam and air condition-
ing supply" (D) and two sources in the "transportation 
and storage" (H) sector. Since three literature sources 
considered two sectors, the total number amounts to 
more than 100 % in comparison to the number of 
reviewed sources. In one case, the validation data set 
was concerned with an aircraft engine, which is ap-
plicable for both sectors, passenger, and freight air 

transportation (H 51.10 and H 52.21). As shown in 
Table 2, three sectors (B 06.10, C 24.10, C 26.11) 
are considered in 43.8 % of all 32 sector references.

RQ2: Which applications are addressed with 
industrial forecasting models?

Although industrial forecasting applications are 
individually designed for a specific purpose, com-
mon characteristics are found in reviewed literature 
sources. Consequently, five generic applications were 
identified in this review:

• Yield prediction: In complex and non-linear 
environments, such as energy and oil produc-
tion, the future output (yield) of the process 
cannot be easily anticipated. Therefore, yield 
prediction based on time series data is applied 
to forecast the process’ output.

• Fault prediction: The prevention of upcoming 
faults and defects in industrial machinery is es-
sential for efficient processes. In this regard, the 
prediction of the remaining useful life of ma-
chines and tools as well as anomaly detection 
are both relevant subfields. Thus, fault predic-
tion is used to forecast future issues and enable 
machine operators or control units to proac-
tively prevent or mitigate faults and deviations.

Table 2. Number of references to each economic sector

Economic sector References

B 05.10 - Mining of hard coal 1
5

B 06.10 - Extraction of crude petroleum 4

C 13.10 - Preparation and spinning of textile fibres 1

22

C 19.20 - Manufacture of refined petroleum products 1

C 21.10 - Manufacture of basic pharmaceutical products 1

C 22.22 - Manufacture of plastic packing goods 1

C 23.51 - Manufacture of cement 1

C 24.10 - Manufacture of basic iron and steel and of ferro-alloys 5

C 24.42 - Aluminium production 1

C 25.50 - Forging, pressing, stamping and roll-forming of metal; powder metallurgy 2

C 25.62 - Machining 1

C 26.11 - Manufacture of electronic components 5

C 26.51 - Manufacture of instruments and appliances for measuring, testing and navigation 1

C 27.90 - Manufacture of other electrical equipment 1

C 29.10 - Manufacture of motor vehicles 1

D 35.11 - Production of electricity 3 3

H 51.10 - Passenger air transport 1
2

H 52.21 - Freight air transport 1
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• Quality prediction: The product quality (e.g., 
chemical properties) in industrial processes is 
often influenced by many factors, which are not 
always controllable, for instance, environmen-
tal aspects (e.g., temperature, humidity). Cor-
respondingly, quality predictions are used to 
prevent quality deviations in advance through 
controllable factors.

• Process behavior prediction: Controlling a pro-
duction process is not only required for con-
sistent product quality, but also for safety and 
efficiency reasons. Hence, predicting the future 
behavior of processes (e.g., pipeline pressure, 
motor torque) is the basis for efficient and ef-
fective process control to mitigate deviations 
and faults.

• Process optimization: Complex and interre-
lated processes are difficult to control and op-
timize, since many influential factors must be 
considered. Consequently, process optimiza-
tion, for instance, to improve the quality, based 
on industrial forecasting models are utilized to 
make use of untapped potentials within pro-
duction processes.

As depicted in Figure 3, out of 29 reviewed lit-
erature sources 12 considered quality prediction as 
the application for their industrial forecasting mod-
els. Additionally, eight sources focused on fault pre-
diction as well as on process behavior prediction. 
These three applications represent the majority of 
reviewed literature sources. On the other hand, 
yield prediction was considered by four literature 
sources and was exclusively applied to energy and 
oil production. Furthermore, only two sources ap-
plied forecasting models in the context of process 
optimization. Since five reviewed literature sources 
considered two applications, the sum of the paper 
counts results in more than 100 %.

RQ3: Which data-driven categories are 
employed for forecasting in the industrial context?

To implement a data-driven application, differ-
ent modeling categories can be employed, whereas 
Figure 4 contains the distribution of data-driven 
categories in reviewed sources. As illustrated, NN 
models represent the majority of data-driven ap-
proaches with 62 % and traditional ML techniques 
rank second (31 %). Statistical models are employed 
by six sources to implement an industrial forecast-
ing application (21 %). Since four considered litera-
ture sources applied two categories of data-driven 
approaches, the sum of the paper counts results in 
more than 100 %.

RQ4: Which data-driven categories are 
employed for each identified industrial forecasting 
application?

To derive new insights concerning applicable 
models, an analysis of data-driven categories and 
identified industrial forecasting applications was 
conducted. As summarized in Table 3, apart from 
process optimization, NN models are similarly dis-
tributed among the forecasting applications. How-
ever, process optimization was only considered by 
two reviewed literature sources in total, thus rep-
resenting the minority of application types. On the 
other hand, traditional ML models were focused on 
quality prediction and process behavior prediction, 
whereas the remaining applications were not or only 
once considered. Additionally, statistical models 
were applied for fault prediction, process behavior 
prediction and process optimization. Since four re-
viewed sources applied two data-driven categories 
and five other sources considered two separate ap-
plications, a total of 38 pairs of application data-driv-
en categories are included in 29 reviewed literature 
sources.

Figure 3. Paper count for each forecasting application Figure 4. Paper count for each considered data-driven category
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RQ5: Which learning types are utilized in 
forecasting models?

As shown in Figure 5, two learning types are ap-
plied for industrial forecasting models. Supervised 
learning is utilized by 83 % of reviewed literature 
sources. Even though five sources (17 %) implement-
ed a semi-supervised learning approach with both un-
supervised and supervised characteristics, no source 
was found with an exclusively unsupervised learning 
model. Moreover, reinforcement learning was not 
applied by any of the reviewed literature sources.

RQ6: Which tasks are performed in industrial 
forecasting scenarios?

Figure 6 depicts the distribution of data-driven 
tasks in industrial forecasting applications. As illustrat-
ed, most literature sources (93 %) developed models 
for regression tasks. On the other hand, classification 
is employed by five out of 29 literature sources (17 
%), whereas three applied both, regression, and clas-
sification models. Other tasks, such as feature extrac-
tion (FE), feature selection (FS) and soft clustering 
(SC), are consistently performed in combination with 
either regression or classification. Depending on the 
specific type of algorithm, these combinations result 
in semi-supervised learning approaches (see above). 
Furthermore, none of the reviewed literature sources 
applied hard clustering (HC).

RQ7: Which algorithms are utilized for 
forecasting in the industrial context?

The analysis of applied algorithms in the context 
of industrial forecasting is divided into statistical, tra-
ditional ML and NN models (see above for the defi-
nition of data-driven categories). Since 12 out of 29 
literature sources utilized two or more algorithms, 
the sum of the paper counts results in more than 
100 %. First, as shown in Figure 7, seven statistical 
methods are employed in the considered literature. 
Three sources used autoregressive integrated moving 
average (ARIMA) models to forecast process behav-
ior and faults. Additionally, Holt-Winters, moving 
average (MA) and a custom heuristic are applied in 
combination with ARIMA in one case. Linear re-
gression (LR) is used in two references, whereas the 
related ridge regression (RR) is applied once. In this 
regard, RR utilizes L2 regularization to improve the 
robustness in comparison to conventional LR models 
[61]. Moreover, principal component analysis (PCA) 
is used by one source to extract linearly independent 
features for subsequent modeling processes.

Second, many different algorithms are used for 
traditional ML models, as depicted in Figure 8. In 
this regard, Takagi-Sugeno (T-S) fuzzy systems rank 
first (four sources) and three sources use partial least 
square (PLS) FE techniques before applying T-S 
fuzzy algorithms. Recursive feature elimination (RFE) 

Table 3. Number of forecasting models for each data-driven category and application

Application Statistical models Traditional ML models NN models

Yield Prediction 0 0 4

Fault Prediction 3 0 5

Quality Prediction 2 6 6

Process Behavior Prediction 2 3 5

Process Optimization 1 1 0

Figure 5. Paper count for each considered learning type Figure 6. Paper count for each considered data-driven task
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based on random forest and the multivariate adap-
tive regression splines (MARS) algorithm are used 
for FS by one literature source each. Support-vector 
machines (SVM) is mentioned in two references. En-
semble techniques, such as random forest (RF) and 
gradient boosting trees (GBT), are implemented by 
three and two sources respectively. Furthermore, 
one source proposed an ensemble technique based 
on support-vector machines, leading to 44 % of tra-
ditional ML sources using ensemble models. The al-
gorithms k-nearest neighbor (K-NN) and naive Bayes 
(NB) are applied by one literature source each. More-
over, the fuzzy c-means algorithm represents the only 
clustering approach in considered sources.

Third, similar to traditional ML models, a large 
number of different NN algorithms are applied by 
corresponding literature sources, as illustrated in Fig-
ure 9. However, long short-term memory (LSTM) al-
gorithms are utilized in ten cases (56 % of NN sourc-
es). Basic recurrent neural networks (RNN) and gated 
recurrent units (GRU) are employed by one and three 
sources respectively. Together with their bidirectional 
derivatives (B-LSTM, B-RNN, B-GRU-AE), recur-
rent approaches are used by the majority of reviewed 
NN sources for industrial forecasting scenarios. Nev-
ertheless, other algorithms, such as convolutional 

neural networks (CNN) or feed-forward single-/multi-
layer perceptrons (SLP/MLP), are also considered 
in the literature. As shown in 9, three sources imple-
mented an auto-encoder (AE) in combination with 
MLP (MLP-AE) and B-GRU (B-GRU-AE), to extract 
compressed features, before conducting the forecast.

5. Discussion

Based on the results, this section provides a dis-
cussion for each research question, whereas findings 
and limitations are outlined.

RQ1. Based on the Statistical Classification of 
Economic Activities in the European Community 
[60], 18 economic sectors were identified in reviewed 
literature sources. In this regard, three sectors con-
tributed a combined 43.8 % to all 32 sector refer-
ences:

• B 06.10 - Extraction of crude petroleum 
(12.5 %)

• C 24.10 - Manufacture of basic iron and steel 
and of ferro-alloys (15.6 %)

• C 26.11 - Manufacture of electronic compo-
nents (15.6 %)

Figure 7. Paper count for each considered statistical algorithm Figure 8. Paper count for each considered traditional ML algorithm

Figure 9. Paper count for each considered NN algorithm
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As a result, it can be concluded that these three 
economic sectors are actively applying industrial fore-
casting models to optimize their operations. Conse-
quently, future research can focus on transferring 
successful methods to other sectors, which do not yet 
rely on sophisticated industrial forecasting models.

RQ2. Even though the applications in reviewed 
literature sources are individually developed for 
specific requirements, common characteristics were 
identified and summarized in five generic applica-
tions. As revealed by the paper count, quality predic-
tions are the main field of application for industrial 
forecasting models (35.3 %), whereas both applica-
tions, fault prediction and process behavior predic-
tion, contribute 23.5 % to the total paper count. Con-
sequently, the remaining applications in the context 
of yield prediction (11.8 %) and process optimization 
(5.9 %) can profit from methods applied in the three 
dominant applications. In particular, proactively op-
timizing a process in advance requires other forecast-
ing models for relevant aspects, such as faults, qual-
ity and process behavior. As a result, technological 
and methodological progress in these applications 
benefits proactive process optimization. Regarding 
the generic production line problems, stated by [9], 
industrial forecasting applications based on time se-
ries data can contribute to these aspects, as shown in 
Table 4. However, forecasting applications are not 
only applied in the context of production lines but 
for production in general. Thus, other economic sec-
tors, for instance, oil and energy production, benefit 
from these applications as well.

RQ3. In contrast to related SLR papers [9, 10], it 
was found, that NN algorithms are applied by the ma-
jority (62 %) of reviewed literature sources. Conse-
quently, it can be concluded, that these algorithms are 
particularly well suited for forecasting models due to 
supporting non-linear relationships, which are often 
found in time series data. However, traditional ML 
algorithms, such as random forest or support vector 
machines, were employed by 9 out of 29 reviewed 

sources. Thus, representing a considerable alterna-
tive to NN approaches, especially when interpretable 
forecasting results are required due to the black box 
characteristics of NN models. Finally, only a minor 
portion of 21 % of reviewed literature sources ap-
plied statistical models. Hence, the current state-of-
the-art of data-driven categories in industrial forecast-
ing are NN approaches followed by traditional ML. 
In this regard, future research could focus on hybrid 
methods consisting of traditional ML and NN to in-
corporate the benefits of both data-driven categories.

RQ4. Yield and fault prediction are dominated by 
NN models, which indicates that the non-linear and 
complex modeling capabilities of neural networks 
are appropriate for these applications. However, de-
pending on the characteristic of the data set and the 
individual goals, traditional ML models can also be 
considered, since these models were successfully em-
ployed for quality and process behavior prediction as 
well. In particular, if explainable results are required 
for the application, traditional ML models have an 
advantage in contrast to the black box characteristics 
of neural networks. Consequently, future research 
could focus on transferring effective methods from 
quality and process behavior prediction applications 
to yield and fault prediction. Furthermore, since 
statistical models are also applied in nearly all appli-
cations (apart from yield prediction), it can be con-
cluded that the applicability mainly depends on the 
specific characteristic of the application. Particularly, 
if only linear dependencies are expected, statistical 
models are well suited for the task.

RQ5. In regard to the learning types, this SLR 
found that all reviewed literature sources contained 
supervised learning algorithms. However, five ref-
erences additionally applied unsupervised learning, 
resulting in semi-supervised models to improve the 
results. Thus, incorporating both learning types, su-
pervised and unsupervised, into industrial forecasting 
models and developing novel hybrid approaches can 
be considered to be subject to future work. More-

Table 4. Association of production line problems and industrial forecasting applications

Production line problems [9] Industrial forecasting application

Quality optimization
Product failure detection Quality prediction

Fault diagnosis
Preventive maintenance

Fault prediction
Process behavior prediction

Scheduling optimization Process behavior prediction
Process optimization

Waste reduction Process optimization

Yield improvement Yield prediction
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over, since none of the reviewed literature sources 
considered reinforcement learning, exploring this 
learning type might lead to new progress in the field 
of industrial forecasting. In particular, the application 
of process optimization (potentially with simulated 
assets) could benefit from reinforcement learning 
[62].

RQ6. The analysis of data-driven tasks revealed 
that all reviewed literature sources contained either 
regression or classification (or both) tasks. Even 
though most sources relied on regression-based fore-
casting models, it was shown that classification can 
also be utilized for forecasting. However, the target 
must be properly adapted to represent a classification 
problem. The remaining tasks (FE, FS, SC) are ap-
plied in conjunction with regression or classification 
to improve the results. Therefore, these tasks are not 
suited for stand-alone usage in forecasting models.

RQ7. Both, regression and classification tasks, are 
performed by NN models and the specific charac-
teristics of time series data leads to a dominant role 
of recurrent NN models (RNN, LSTM, GRU) and 
their bidirectional derivatives. In particular, LSTM 
models are mainly applied in industrial forecasting 
applications (35 % of all reviewed sources). Auto-
encoders based on NN are used to extract com-
pressed features, which normally yield superior re-
sults. Nonetheless, these FE techniques are currently 
only applied by a minor subset of reviewed sources, 
hence, additional opportunities are expected in other 
applications. Although, CNN models are inherently 
well suited for image processing (e.g., object recogni-
tion), they can be employed for time series forecasts 
as well. For this purpose, the characteristic of CNN 
algorithms to detect patterns among neighboring data 
points can be exploited for time series data and en-
hanced in future research.

6. Conclusion

To sum up this work, data-driven models are 
employed across different industries and contrib-
ute to the competitive advantage of implementing 
organizations. These models are also utilized for 
industrial forecasting applications to anticipate the 
performance, quality, efficiency, and yield in produc-
tion systems. However, due to time series consid-
eration, forecasting conceptually differs from other 
data-driven models. Therefore, in contrast to existing 
literature, this work conducted a dedicated SLR to 
determine the state-of-the-art of industrial forecasting 
models.

Consequently, the systematic search process was 
based on specific research questions and search 
terms, resulting in an initial screening of 183 litera-
ture sources. During this first phase, 38 sources were 
found to be relevant. Nevertheless, after a full-text 
assessment was performed, 29 journal papers and 
conference proceedings were included in the review, 
where predefined data fields were extracted to an-
swer the research questions.

As shown by the quantitative results, although sev-
eral economic sectors are referenced in the literature, 
three were found to be particularly focused on indus-
trial forecasting models. Additionally, this study iden-
tified five generic industrial forecasting applications 
based on common characteristics determined in the 
reviewed literature. In this regard, forecasting models 
are mainly applied for quality, fault, or process be-
havior prediction, as shown by the results. In contrast 
to related SLR studies, it was found, that NN mod-
els represent the majority of data-driven categories, 
whereas traditional ML, such as random forest, is 
also considered to be a relevant approach. Neverthe-
less, these two categories are not equally employed 
across different applications. As determined by this 
study, while NN models are similarly distributed 
among different applications, traditional ML models 
are mostly focused on quality and process behavior 
predictions. Additionally, the findings revealed that 
all forecasting models incorporate at least one super-
vised component. Importantly, only five sources con-
sidered a semi-supervised approach and no reference 
to reinforcement learning was found. In accordance 
with these findings, all reviewed sources focused on 
either regression or classification (or both) as super-
vised learning tasks. Other aspects, such as feature 
extraction, feature selection and soft clustering, are 
exclusively used in conjunction with these tasks. Fur-
thermore, the industrial forecasting models are dom-
inated by recurrent neural networks, in particular by 
the LSTM algorithm, and their bidirectional deriva-
tives. Moreover, auto-encoders are suitable to extract 
compressed features, while CNN models are used to 
detect patterns among neighboring data points. 

As stated in the introduction, with these findings, 
this study closes the research gap for forecasting ap-
plications in the production domain considering 
non-linear and time-varying dependencies. Through 
its results and identification of the current state-of-
the-art, this study provides a theoretical contribution 
to the scientific discourse. Additionally, practitioners 
can utilize these findings as an indicator for suitable 
methods for a specific application and problem con-
text. Consequently, this paper is situated between 
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SLRs focusing on the applicability of general con-
cepts [7-9] and SLRs identifying state-of-the-art meth-
ods for specific applications [10-14] and comple-
ments these related works.

However, certain limitations regarding the re-
search design and selection criteria are present. First, 
while providing a definition of generic industrial 
forecasting applications allows to determine general 
trends in the applicability of data-driven categories, 
the actual applicability is determined by the specifics 
of the application and problem domain. Therefore, 
the results can only act as an indicator and not as the 
sole criteria for selecting appropriate forecasting mod-
els for a specific application. Second, even though this 
study extends the considered domain to the produc-
tion context in general, other applications, such as 
sales [63] or temperature forecast [64], are subject 
to non-linear and time-dependent behavior as well. 
Therefore, these related fields could also provide 
interesting methods for the industrial sector. Third, 
since this study is entirely focused on data-driven ap-
proaches, well-known physical models to dynamically 
predict future behavior via partial differential equa-
tions are not considered. However, hybrid methods, 
such as physics-informed neural networks, combine 
advantages from both research fields, hence, leading 
to interesting results [65]. Considering these research 
limitations and the quantitative findings in this work, 
the following future research direction can be derived:

• Since three economic sectors currently 
dominate the application of industrial fore-
casting models, other industries could adapt 
forecasting methods and benefit from these 
approaches.

• Applications for yield prediction and pro-
cess optimization can profit from other ap-
plications which represent the majority of 
reviewed literature sources.

• Semi-supervised learning models led to com-
petitive results, however, are currently under-
represented in industrial forecasting applica-
tions. Thus, hybrid approaches, for instance 
with NN based auto-encoders, are an active 
field of research.

• Although reinforcement learning is currently 
not applied for industrial forecasting models, 
process optimization applications could par-
ticularly benefit from this learning type in the 
future [8, 62].

• Even though CNN based models are origi-
nally developed for image processing, the 

characteristics can be successfully exploited 
for time series data as well. Therefore, the 
field of industrial forecasting can benefit 
from related disciplines of image and video 
processing/analysis.

In conclusion, forecasting in production systems 
is actively researched at a fast pace. Correspondingly, 
the findings of this SLR provide insights into this do-
main to foster an understanding of the current state-
of-the-art for industrial forecasting to facilitate future 
research initiatives.
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Appendix A

Table 5 contains literature sources, which were not considered relevant and excluded after the full-test as-
sessment.

Table 5. Reasons for excluding full text assessed literature sources

Reference Reason for exclusion

[66] Reactive approach is not suited for forecasting scenarios

[67] No time series data considered

[68] Focused on optimizing control charts instead of forecasting

[69] Not related to production processes

[70] General review of change detection techniques without explicit application

[71] Specifically developed for rotary kiln processes and not suited for the research questions

[72] Focused on identifying optimization potentials in chemical processes

[73] Not related to production processes

[74] Focused on image data as input for predictions which is not applicable for industrial forecasting


