
International Journal of Industrial Engineering and Management (IJIEM), Vol.1 No 4, 2010, pp. 155 - 161
Available online at www.ftn.uns.ac.rs/ijiem

ISSN 2217-2661

IJIEM

Requirements-Based Testing Process in Practice
(Originally presented as “Getting it right the first time”)

Predrag Skoković

Test Manager, Execom, Novi Sad, Serbia, pskokovic@execom.eu

Marija Rakić-Skoković

Teaching assistant, Faculty of Technical Sciences, Novi Sad, Serbia, marijars@uns.ac.rs

Received (05.12.2010); Revised (23.12.2010); Accepted (24.12.2010)

Abstract

In many organizations, testing, regarded as quality verification, begins only once code has been
completed. However, errors found in requirements are the leading cause of project failures, defects
and rework. Even though many companies use some method of requirements management and some
form of software quality testing, most of them cannot (or do not) link them together.

While searching for an application lifecycle management (ALM) methodology that might give us an
answer to these problems, Requirements-Based Testing (RBT) emerged as a possible solution. RBT
provides a set of quality assurance activities and management tools that enable getting requirements
right from the outset.

This paper presents lessons learned while introducing requirements-based testing methodology, in
order to put the project in control and deliver applications on time.

Key words: application lifecycle management, process improvement, requirements, testing

1. INTRODUCTION
Many studies show that majority of software projects fail
to achieve schedule and budget goals. The poor quality
of software is one of the main reasons laying behind
many failures. These often result in great rework of
application requirements, design and code. Experience
and numerous studies show that: behind poor software
quality are defects in requirements specifications and
problematic system test coverage. Put simply, low
quality of input causes low quality of output no matter
how project team is experienced, which methodology is
used and which budget and timeline constraints are
established.

According to James Martin the root causes of 56
percent of all defects identified in software projects are
introduced in the requirements phase (Fig. 1). About 50
percent of requirements defects are result of poorly
written, unclear, ambiguous, and incorrect
requirements. The other 50 percent of requirements
defects are due to incompleteness of specification (i.e.
omitted requirements) [1].

Figure 1. Distribution of defects in software projects

Other statistics point to similar problems [2]:

• 82 percent of application rework is related to
errors in requirements.

• Problems in requirements represent 44 percent
of the reasons behind project cancellations.

• Only 54 percent of initial project requirements are
actually realized.

It is not uncommon that a system, which is thoroughly
and successfully tested, makes its users unhappy.

156 Skoković, P., Rakić-Skoković, M.

IJIEM

Reason behind this fact is that the development team
got the requirements wrong.

Even with all quality techniques practiced today, the
lion’s share of bugs is found by testing, which is
performed typically after code is delivered. This makes
testing by far the costliest method of finding bugs. One
of the key goals of testing is to achieve optimal test
coverage, in order to maximize a chance of finding a
defect in testing phase. Reasons for making it very hard
to accomplish good test coverage are [2]:

• Tests are often conducted at the end of the
development process.

• The complexity of modern applications makes it
very hard to cover all of the possible scenarios.

• Application requirements change frequently, but
their changes are not properly managed.

During the development of a complex application, with
strict time and budget frame, we have noticed some of
the abovementioned problems. Major problem was

recognized in incomplete and frequently modified
requirements. This resulted in constant:

• Rework of design and code.

• Rework of test cases, in order to stay current with
requirements, which led to shorter time for test
execution than planned.

• Misunderstanding of requirements among
members of development team.

All of the abovementioned denoted the need for
methodology that could be easily and “cheaply”
adopted, with methods that could positively resolve
detected issues.

2. WHY REQUIREMENTS-BASED TESTING?
Guided with the definition of software quality (Fig. 2)
and one of the general principals of software testing
(Fig. 3), Requirements-Based Testing (RBT)
methodology emerged as a solution to problems
identified in project.

Software quality is:

1. The degree to which a system, component, or process meets specified requirements.

2. The degree to which a system, component, or process meets customer or user needs or
expectations.

Figure 2. Definition of software quality suggested by The Institute of Electrical and Electronics Engineers (IEEE, 1991) [3]

Figure 3. Principle of early testing [4]

The focus of RBT is to discover and fix low quality of
requirements thus making valid input which contributes
greatly in defining clear scope of the project. By
combining methods from requirements engineering and
software testing, requirements-based testing
methodology provides a set of quality assurance
activities and management tools that enable getting
requirements right from the outset. By using RBT it is
possible to discover requirements errors before they
become extremely expensive to fix and manage
inevitable changes during software lifecycle.

3. OVERVIEW OF REQUIREMENTS-BASED
TESTING

The requirements-based testing process addresses two
major issues: first, validating that the requirements are
correct, complete, unambiguous, and logically
consistent; and second, designing a necessary and
sufficient (from a black box perspective) set of test
cases from those requirements, to ensure that the

design and code fully meet the requirements. When
designing tests two issues need to be overcome:
reducing the enormous number of potential tests down
a reasonable size set and ensuring that the tests got
the right answer for the right reason. The RBT process
does not assume that we will have good requirements
specifications. The RBT process will drive out ambiguity
and drive down the level of detail.

The overall RBT strategy is to integrate testing
throughout the development life cycle and focus on the
quality of the requirements specification. This leads to
early defect detection which has been shown to be
much less expensive than finding defects during
integration testing or later. The RBT process also has a
focus on defect prevention, not just defect detection [5].

To put the RBT process into perspective, testing can be
divided into the following activities [5], [6]:

Skoković, P., Rakić-Skoković, M. 157

IJIEM

1. Define Test Completion Criteria. The test effort
has specific, quantifiable goals. Testing is
completed only when goals have been reached

2. Design Test Cases. Logical test cases are
defined by four characteristics: the initial state of
the system prior to executing the test, the data,
the inputs, and the expected results.

3. Build Test Cases. There are two parts needed
to build test cases from logical test cases:
creating the necessary data, and building the
components to support testing (e.g., build the
navigation to get to the portion of the program
being tested).

4. Execute Tests. Execute test-case steps against
the system being tested and document the
results.

5. Verify Test Results. Testers are responsible for
verifying two different types of test results: Are
the results as expected? Do the test cases meet
the test completion criteria?

6. Verify Test Coverage. Track the amount of
functional coverage achieved by the successful
execution of each test.

7. Manage and Track Defects. Any defects
detected during the testing process are tracked to
resolution. Statistics are maintained concerning
the overall defect trends and status.

8. Manage the Test Library. The test manager
maintains the relationships between the test
cases and the programs being tested. The test
manager keeps track of what tests have or have
not been executed, and whether the executed
tests have passed or failed.

RBT addresses activities one, two, and six. The
remaining activities are addressed by test management
tools that track the status of test executions.

Figure 4. Requirements-based testing process flow

3.1 The RBT methodology
The RBT methodology is a 12-step process (Fig. 4) [6],
[7]:

1. Validate requirements against objectives.
Optimize project scope by ensuring that each
requirement satisfies at least one business

objective. If there is no match between the
requirements and business objectives (if “what”
does not match the “why”), refinement is
necessary.

2. Apply use cases against requirements. Some
organizations document their requirements with
use cases. Map requirements against a task-

158 Skoković, P., Rakić-Skoković, M.

IJIEM

oriented or interaction-oriented view of the
system. If one or more use-cases cannot be
addressed by the requirements, then the
requirements are not complete.

3. Perform an initial ambiguity review. An
ambiguity review is a technique for identifying
and eliminating ambiguous words, phrases, and
constructs. It is not a review of the content of the
requirements. The ambiguity review produces a
higher-quality set of requirements for review by
the rest of the project team.

4. Perform domain expert reviews. Feedback of
users and domain experts should be used to
refine the requirements before additional work is
done.

5. Structure and formalize requirements. To
systematically achieve high test coverage formal
and structured representations of requirements
need to be created.

Multiple techniques can be used to provide
structure and formality to natural language
requirements. The purpose of these techniques is
to reveal cause-effect relationships embedded
within requirements, that is to express
requirements as a set of conditions (causes) and
resulting actions (effects). Cause-effect charting
is one of these techniques. Another way to
achieve similar goals is to express requirements
as flow charts, since they naturally depict
precedence dependency between actions as well
as conditional branching of activities.

Once this is done, it is possible to define “logical”
test cases, which will ensure optimal coverage of
requirements, while evolving into actual tests that
will be run against the system.

6. Logical consistency checks performed and
test cases designed. A set of logical test cases
can be defined (manually or automatically), which
is exactly equivalent to the functionality captured
in the requirements. However, this set of test
cases may include many redundant cases (i.e.
overlapping with other test cases).

To optimize the number of test cases but still
provide full coverage, techniques such as
decision (truth) tables can be applied if cause-
effects charts were used to structure the
requirements. If flow charts were used for that
purpose, then generation of optimal set of test
cases means finding all unique paths on the flow
chart, for which there are known techniques.

7. Review of test cases by requirements
authors. The designed test cases are reviewed
by the requirements authors. If there is a problem
with a test case, the requirements associated

with the test case can be corrected and the test
cases redesigned.

8. Validate test cases with the users/domain
experts. If there is a problem with the test case,
the requirements associated with it can be
corrected and the test case redesigned.
Users/domain experts obtain a better
understanding of what the deliverable system will
be like.

9. Review of test cases by developers. The test
cases are also reviewed by the developers. By
doing so, the developers understand what they
are going to be tested on, and obtain a better
understanding of what they are to deliver so they
can deliver for success.

10. Use test cases in design review. The test
cases restate the requirements as a series of
causes and effects. As a result, the test cases
can be used to validate that the design is robust
enough to satisfy the requirements. If the design
cannot meet the requirements, then either the
requirements are infeasible or the design needs
rework.

11. Use test cases in code review. Each code
module must deliver a portion of the
requirements. The test cases can be used to
validate that each code module delivers what is
expected.

12. Verify code against the test cases derived
from requirements. The final step is to build test
cases from the logical test cases that have been
designed by adding data and navigation to them,
and executing them against the code to compare
the actual behaviour to the expected behaviour.
Once all of the test cases execute successfully
against the code, then it can be said that 100
percent of the functionality has been verified and
the code is ready to be delivered into production.

3.2 Measurement in RBT process
Throughout the RBT process, multiple measures can be
used to quantify the status of deliverables and activities.
This helps managers and process experts oversee
quality initiatives across the IT application portfolio.

Examples of information that could be measured
include [7]:

• Percent of requirements reviewed by domain
experts, designers and coders.

• Percent of requirements that contain ambiguous
terms.

• Percent of requirements with formal
representation.

Skoković, P., Rakić-Skoković, M. 159

IJIEM

• Percent of formal requirements covered by formal
test cases.

• Logical and actual code coverage.

3.3 The role of traceability in RBT
Traceability also plays a critical role if using RBT since
maintaining traceability information between
requirements and logical test-cases and tests is crucial.
This information is required for monitoring progress and
coverage, as well as properly managing the impact of
changes in requirements. Without it, it is more difficult to
determine which test cases or tests should be changed
if a specific requirement changes.

4. CASE STUDY

4.1 Overview
This case study covers an application, which consists of
two web portals (Portal_1 and Portal_2) that share the
same database. Complexity of Portal_1 is three times
greater than of Portal_2. Being a part of a large system,
which was already developed and in use, technology
and domain knowledge should not have significant
impact on implementation.

After requirements have been written, and accepted
(without deep analysis), budget was determined with
aspect to estimates and proved formula. With
acknowledged time frame limit and budget a team was
gathered. Since this was a shared outsourced project,
the team was divided into two (a thousand miles
separated) groups:

• Team group 1 – 3 members (project manager,
requirements manager and architect).

• Team group 2 – 5 full time members (3
developers and 2 testers), 2 part time members
(project manager and additional tester).

As soon as careful planning was done, implementation
of Portal_1 started. To gain better control over
implementation phase a set of milestones was
determined. After the milestone was reached the
release was deployed and tested to verify that
implementation is on the right track.

However, with the first milestones it was obvious that
implementation is running behind a schedule. Number
of misunderstandings of requirements between team
members and requirements changes led to a bunch of
rework of code and test cases.

As the end of implementation of Portal_1 was
approaching, (but far beyond deadline) change of
methodology emerged as a must in order to finish
portals on time, with set budget. In order to retake
control over project, the decision to introduce parts of
requirements based testing methodology was made.
Because of the lack of resources, time and knowledge

of RBT, only the next steps were introduced in process
of software lifecycle (Fig. 4, green boxes):

• Requirements quality steps.

• Logical test case design steps.

• Test execution step (which presents a standard
testing activity).

With introduction of RBT methods implementation
phase of Portal_2 ended with minor problems, much
before estimated time, and the project was finished on
time.

4.2 Results
After completing both portals, certain analyses were
conducted in order to determine the impact that
implementation of RBT methods had on performance
and quality. Results of those analyses are displayed in
the following figures.

As mentioned above, time estimation for
implementation of Portal_1 was breached. After
applying some of the RBT methods during the
development of Portal_2, number of issues (related to
erroneous requirements) was significantly reduced. This
led to shorter time of implementation. As a final result
the project was finished within the estimated time frame
(Fig. 5).

Figure 5. Estimated vs. Actual time of development of
Portal_1 and Portal_2

Another statistics consider distribution of erroneous
requirements before and during implementation of web
portals (Fig. 6):

• Before implementation of Portal_1 requirements
specification was not thoroughly tested, so all the
problems related to requirements appeared in
implementation phase. The data shows that, at
the end, there were more than 44% of defected
requirements.

160 Skoković, P., Rakić-Skoković, M.

IJIEM

• Regarding detailed analysis of requirements
specification, before the implementation of
Portal_2, the most of problematic requirements

were revealed and fixed. Only small percent of
requirements were detected in implementation
phase as troublesome.

Figure 6. Distribution of erroneous requirements

The following analysis addresses the distribution of issues by priority (Fig. 7.).

Figure 7. Distribution of issues by priority

Issues in the project were categorized by priority, as
follows:

• Priority 1 – must fix, will be fixed as soon as
possible (blocking).

• Priority 2 – should fix, will be fixed before product
release (non-blocking).

• Priority 3 – could fix, fix as time and resources
allow.

• Priority 4 – would like to fix, but low priority (nice
to have).

It is noticed that root cause of priority 3 issues is in the
requirements. Figure 7 shows that number of priority 3
issues is significantly reduced.

Priority 4 issues relate mostly to usability problems.
These were the most registered issues in Portal_2.

Distribution of issues caused by erroneous
requirements of Portal_1 and Portal_2 are displayed in
Figure 8 and Figure 9, respectively.

Figure 8. Distribution of issues caused by erroneous requirements of Portal_1

Skoković, P., Rakić-Skoković, M. 161

IJIEM

Figure 9. Distribution of issues caused by erroneous requirements of Portal_2

The data shows that there were no priority 1 and priority
2 issues caused by erroneous requirements in Portal_2.
Also, number of priority 3 and priority 4 issues related to
problematic requirements is significantly lower.

Figure 10 shows that number of faulty test cases in
Portal_2 has significantly decreased. Also, it was
noticed that almost 20 percent of faulty test cases were
fixed several times, as related requirements were
changed.

Figure 10. Percent of invalid test cases caused by erroneous requirements

5. CONCLUSION
After analyzing gathered data we have come to next
conclusions:

• By introducing RBT methods of testing
requirements, before the implementation phase,
number of problematic requirements found during
the implementation was significantly lower, which
resulted in improved stability of code and test
cases (less rework) and time saving.

• Most of the issues found in Portal_2 had low
priority, and were less effort-demanding and time
consuming to be fixed.

• High priority issues (bugs) in Portal_2 were
mostly results of developers’ negligence. This
shows that peer review techniques that
developers were using do not produce expected
results. By improving this part of the process
(peer reviews) it should be possible to increase
quality and save time.

• Applying of full RBT process could significantly
lower the number of invalid test cases and make
developers more aware of testing activities.

• Exhaustive requirements testing demanded
constant communication between team groups,
located in different countries, which resulted in
better understanding and overcoming of cultural
differences.

Partial applying of RBT methodology did make
improvement in software development process, and
made it possible to get it right the first time. Some steps
of the RBT process have not been used and statistics
shows that there can be positive impact if introduced in
process of software development.

6. REFERENCES
[1] Martin, J.,(1984), "An Information Systems Manifesto".

http://www.amazon.com/Information-Systems-Manifesto-James-
Martin/dp/0134647696/ref=sr_1_1?ie=UTF8&s=books&qid=1233
001157&sr=8-1 [15.02.2009]

[2] Borland, (2006), "Eliminate the Testing Bottleneck".
http://www.borland.com/us/solutions/lifecycle-quality-
management/requirements-based-testing.html [15.02.2009]

[3] Galin D., (2004), "Software Quality Assurance".
http://www.amazon.com/Software-Quality-Assurance-Theory-
Implementation/dp/0201709457/ref=sr_1_1?ie=UTF8&s=books&
qid=1232900529&sr=1-1 [15.02.2009]

[4] Spillner, A., Linz, T., Schaefer, H., (2006), "Software Testing
Foundations".
http://www.amazon.de/Software-Testing-Foundations-Certified-
Foundation/dp/3898643638/ref=sr_1_7?ie=UTF8&s=books-intl-
de&qid=1232900648&sr=1-7 [15.02.2009]

[5] Bender RBT Inc., (2003), "Requirements Based Testing,
Process Overview".
http://benderrbt.com/Bender-Requirements Based Testing
Process Overview.pdf [15.02.2009]

[6] Mogyorodi, G., (2003), "What Is Requirements-Based Testing?".
http://www.stsc.hill.af.mil/crosstalk/2003/03/Mogyorodi.html
[15.02.2009]

[7] Aharonovitz, M., (2008), "Three Tips to Improve Your
Requirements-Based Testing (RBT)".
http://www.borland.com/us/company/newsletter/issue5/3tips_imp
rove_rbt.html [15.02.2009]

