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Abstract 

Recent scholarly work on the causal relationship between exchange rate movements and currency 
order flows has provided mixed results. This paper proposes a wavelet approach for determining 
multiscale causality between the Canada/U.S. dollar returns and aggregate market order flow. 
Evidence of bi-directional causality that contradicts the microstructure literature is found for almost all 
time scales. Multiresolution analysis identifies significant structural breaks in the data that are 
potentially driving such findings. 
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1. INTRODUCTION 
 
Foreign exchange (FX) market microstructure examines 
the elements of the currency trading process: the arrival 
and dissemination of information (via currency order 
flows) that is subsequently reflected in exchange rates 
and the FX market design which determines how orders 
are transformed into trades. Market order flow is a 
measure of “excess demand” that is defined as the 
difference between the currency purchases and sales 
for all relevant currency dealers over a period of time. 
Recent market microstructure literature has reported 
that currency order flows are powerful determinants and 
predictors of exchange rate returns (Evans and Lyons, 
2002, 2005; Gradojevic, 2007; Osler and Vandrovych, 
2009). The major assumption underlying both equity 
and FX market microstructure models is that price 
movements are driven by order flow. This argument can 
be found in the classical equity microstructure literature 
such as Hasbrouck (1991), Glosten and Milgrom (1985) 
and O’Hara (1995): in rational markets, order flow 
should reflect innovations in dispersed information, and 
not vice-versa. 

Only a select few papers have directly tested the 
causality assumption in FX markets. Killeen et al. 
(2006) find that for the DM/FRF exchange rate Granger 
causality runs from interdealer order flow to price, and 
not vice versa. However, several papers documented 
statistically significant reverse causality effects. For 
instance, Sager and Taylor (2008) perform Granger 
causality tests on the data from Evans and Lyons 
(2002) and reveal that causality runs from the DM/USD 
and JPY/USD exchange rate returns to corresponding 
interdealer order flows. They also present evidence 
against the causality assumption for customer order 

flows. This evidence corroborates Marsh and O’Rourke 
(2005) who argue that commercial order flow is price 
sensitive. Similarly, Boyer and van Norden (2006) 
conclude that interdealer order flow responds to the 
FRF/USD spot rate innovations. They note that the 
price responsiveness of commercial order flow contrasts 
with the usual predictions of the microstructure 
literature. Gradojevic and Neely (2008) demonstrate the 
ability of the Canada/U.S. dollar returns to predict 
financial order flows, but not non-financial order flows. 
Finally, Lyons (2001) finds some evidence that falling 
prices induce additional selling in the JPY market and 
refers to that phenomenon as “distressed selling”. 

All of the above papers focus on testing the causality 
assumption at one particular data frequency (typically 
daily). In financial markets, the data generating process 
(DGP) is a complex network of layers with each layer 
corresponding to a particular frequency. A successful 
characterization of such DGP should be estimated with 
techniques that account for intraand inter-frequency 
dynamics (Dacorogna et al., 2001). By proposing a 
wavelet approach for determining multiscale causality, 
this paper provides a complete inter-frequency 
characterization of the DGP governing the causality 
relationship between aggregate market order flow and 
the Canada/U.S. dollar exchange rate returns. 
Specifically, such an approach investigates whether the 
existence as well as the direction of causality is 
frequency-dependent.1  
 
1The idea that the causality relationship between two variables may 
have different characteristics at different time-scales can also be 
found in Gençay et al. (2001). They use wavelet multiresolution 
analysis of money growth and inflation, and show that for Argentina, 
Brazil, Chile, Israel, Mexico and Turkey the nature of the causality 
changes with wavelet scales (periods between two and 32 months). 
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These examinations offer a powerful new platform for 
examining the dynamics of causality between two 
variables, and complement and extend the current state 
of FX market microstructure literature. Moreover, the 
proposed multiscale (wavelet) framework can also be 
viewed as the one paving the future of economics, 
management and industrial engineering. Specifically, 
extensions of this approach such as wavelet variance 
decomposition, wavelet cross-covariance and wavelet 
cross-correlation can be used in any practical situation 
that involves nonstationary or transient time series. 
While the current work emphasizes the potential of 
wavelets, it is worthwhile to note that the future will 
inevitably bring refinements of this methodology and 
develop more sophisticated statistical methods for 
signal processing. 

The results show very little evidence of a stable causal 
relationship between the market order flow and returns 
across all time scales. Moreover, the causality appears 
to be mostly bidirectional, which is in general inconsistent 
with the microstructure theory. Multiresolution analysis 
and decomposition of FX returns and order flow at multiple 
time scales identifies a significant structural break (or 
regime switch) in volatility of total order flow around 
1999. Similar findings can be observed for various 
choices of wavelet filters up to the 7th scale, which 
corresponds to the 128-day (roughly 4-month) horizon. 

In the next section, the wavelet methodology is 
explained. The data are briefly presented in Section 3. 
Section 4 discusses the findings and the final section 
concludes the paper. 

2. WAVELET FRAMEWORK 
Wavelet methods are rather newer ways of analyzing 
time series and can be seen as a natural extension of 
the Fourier analysis. The formal subject matter, in terms 
of their formal mathematical and statistical foundations 
go back only to the 1980s. In recent years, there have 
been several unique applications of wavelet methods to 
financial and econometric problems. Early applications 
of wavelets in economics and finance are by Ramsey 
and his coauthors (see Ramsey et al. (1995), Ramsey 
and Zhang (1997), Ramsey (1999), Ramsey (2002) for 
a review and references) who explore the use of 
discrete wavelet transformation (DWT) in decomposing 
various economic and financial data. Davidson et al. 
(1998) investigated U.S. commodity prices via wavelets. 
Gençay et al. (2003, 2005) propose a wavelet approach 
for estimating the systematic risk or the beta of an asset 
in a capital asset pricing model. The proposed method 
is based on a wavelet multiscaling approach where the 
wavelet variance of the market return and the wavelet 
covariance between the market return and a portfolio 
are calculated to obtain an estimate of the portfolio’s 
systematic risk (beta) at each scale. In time series 
econometrics, one example of the successful 
application of wavelets is in the context of long memory 
processes where a number of estimation methods have 
been developed. These include wavelet-based OLS, 
the approximate wavelet-based maximum likelihood 
approach, and wavelet-based Bayesian approach. 

Fan (2003) and Fan and Whitcher (2003) provide an 
extensive list of references. The success of these 
methods relies on the so called “approximate 
decorrelation” property of the DWT of a possibly 
nonstationary long memory process.2 Fan and Whitcher 
(2003) propose overcoming the problem of spurious 
regression between fractionally differenced processes 
by applying the DWT to both processes and then 
estimating the regression in the wavelet domain. Other 
examples of applications of wavelets in econometrics 
include wavelet-based spectral density estimators and 
their applications in testing for serial correlation/conditional 
heteroscedasticity, see e.g., Hong (2000), Hong and 
Lee (2001), Lee and Hong (2001), Duchesne (2006a), 
Duchesne (2006b), and Hong and Kao (2004). Gençay 
and Fan (2009) that applied wavelets to test the 
presence of a unit root in a stochastic process. By using 
Monte Carlo simulations, they demonstrated the 
comparable power of the wavelet-based tests with 
reasonable empirical sizes. 

A wavelet is a small wave which grows and decays in a 
limited time period.3 To formalize the notion of a 
wavelet, let ψ(.) be a real valued function such that its 
integral zero, 

  (1) 

and its square integrates to unity, 

  (2) 

Wavelets are, in particular, useful for the study of how 
weighted averages vary from one averaging period to 
the next. Let x(t) be real-valued and consider the 
integral 

  (3) 

where we assume that e > s. x (s, e) is the average 
value of x(.) over the interval [s, e]. Instead of treating 
an average value x (s, e) as a function of end points of 
the interval [s, e], it can be considered as a function of 
the length of the interval, 

 

while centering the interval at 

 
λ is referred to as the scale associated with the 
average, and using λ and t, the average can be 
redefined such that 

 

 
2See Fan (2003) for a rigorous proof of this result for a nonstationary 
fractionally differenced process. 
3The contrasting notion is a big wave such as the sine function which 
keeps oscillating indefinitely. 
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where a(λ, t) is the average value of x(.) over a scale of 
λ centered at time t. The change in a(λ, t) from one time 
period to another is measured by 

  (4) 

Equation 4 measures how much the average changes 
between two adjacent nonoverlapping time intervals, 
from t − λ to t + λ, each with a length of λ. Because the 
two integrals in Equation 4 involve adjacent nonoverlapping 
intervals, they can be combined into a single integral 
over the real axis to obtain 

  (5) 

where 

 
ω(λ,t)’s are the wavelet coefficients and they are 
essentially the changes in averages across adjacent 
(weighted) averages. 

2.1 Discrete wavelet transformation 
In principle, wavelet analysis can be carried out in all 
arbitrary time scales. This may not be necessary if only 
key features of the data are in question, and if so, DWT 
is an efficient and parsimonious route as compared to 
the continuous wavelet transformation (CWT). The 
DWT is a subsampling of ω(λ,t) with only dyadic scales, 
i.e., λ is of the form 2j−1, j = 1, 2, 3, ... and, within a 
given dyadic scale 2j−1, t’s are separated by multiples of 
2j . 

Let x be a dyadic length vector (N = 2J) of observations. 
The length N vector of discrete wavelet coefficients w is 
obtained by 

, 

where W is an N × N real-valued orthonormal matrix 
(based on the wavelet type) defining the DWT which 
satisfies WTW = IN (n × n identity matrix).4 The nth 
wavelet coefficient ωn is associated with a particular 
scale and with a particular set of times. The vector of 
wavelet coefficients may be organized into J + 1 
vectors, 

, 

where wj is a length N/2j vector of wavelet coefficients 
associated with changes on a scale of length λj = 2j−1 
and vJ is a length N/2J vector of scaling coefficients 
associated with averages on a scale of length 2J = 2λJ. 
 
4Since DWT is an orthonormal transform, orthonormality implies that 
x = WTw and ||w||2 = ||x||2. 

Using the DWT, we may formulate an additive 
decomposition of x by reconstructing the wavelet 
coefficients at each scale independently. 

Let dj = T
jW wj define the jth level wavelet detail associated 

with changes in x at the scale λj (for j = 1,... , J). 

The wavelet coefficients wj = Wj x represent the portion 
of the wavelet analysis (decomposition) attributable to 
scale λj, while T

jW wj is the portion of the wavelet 

synthesis (reconstruction) attributable to scale λj. 

For a length N = 2J vector of observations, the vector 
dJ+1 is equal to the sample mean of the observations. 

A multiresolution analysis (MRA) may now be defined via 

  (6) 

That is, each observation xt is a linear combination of 
wavelet detail coefficients at time t. Let sj = 1

1
+
+=

J
jkP dk 

define the jth level wavelet smooth. 

Whereas the wavelet detail dj is associated with 
variations at a particular scale, sj is a cumulative sum of 
these variations and will be smoother and smoother as j 
increases. In fact, x − sj = J

kP 1=  dk so that only lower-
scale details (high-frequency features) from the original 
series remain. 

The jth level wavelet rough characterizes the remaining 
lower-scale details through 

 
The wavelet rough rj is what remains after removing the 
wavelet smooth from the vector of observations. A 
vector of observations may thus be decomposed 
through a wavelet smooth and rough via 

x = sj + rj , 
for all j.  
The terminology “detail” and “smooth” were used by 
Percival and Walden (2000) to describe additive 
decompositions from Fourier and wavelet transforms. 
The goal is to look at data at different resolutions with 
this representation. The smooth part is coarse: we are 
looking at local averages, i.e., low-frequency trends and 
the sample mean. The detail is deviation from the 
smooth part. 

A variation of the DWT is called the maximum overlap 
DWT (MODWT). Similar to the DWT, the MODWT is a 
subsampling at dyadic scales, but in contrast to the 
DWT, the analysis involves all times t rather than the 
multiples of 2j. 

Retainment of all possible times eliminates alignment 
effects of DWT and leads to more efficient time series 
representation at multiple time scales. 
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3. DATA DESCRIPTION 
The data is at a daily frequency and are obtained from 
the Bank of Canada. The data spans the period 
between January 2, 1990 and December 31, 2004. If St 
denotes an exchange rate at time t, then exchange rate 
returns are defined as rt = log(St) − log(St−1). 
The order flow data were obtained from the Bank of Canada 
and they are four types of daily trading flows (in Canadian 
dollars) for eight major Canadian commercial banks: 

• Commercial client transactions (CC) include all 
transactions with resident and nonresident non-
financial customers (transactions with banks, 
investment dealers, or other non-bank financial 
institutions such as trusts, life insurance, and 
investment funds are excluded); 

• Foreign institution transactions (FD) include all 
transactions with foreign banks, branches and 
subsidiaries of Canadian banks located outside 
Canada, foreign investment dealers and foreign 
non-bank financial institutions; 

• Canadian-domiciled investment transactions 
(CD) include all transactions with nondealer 
financial institutions located in Canada; 

• Interbank transactions (IB) pertain to other 
Canadian-domiciled financial institutions, such as 
chartered banks, credit unions, investment 
dealers, and trust companies. 

These order flows represent approximately 40-60% 
of all Canada/U.S. dollar transactions and their 
arithmetic sum is the daily aggregate market order 
flow (xt = CCt+FDt+CDt+IBt). Using the definition 
from Lyons (2001), order flows are measured as the 
difference between the number of currency purchases 
(buyer-initiated trades) and sales (seller-initiated 
trades). Ceteris paribus, positive (negative) order flow 
should raise (lower) the Canada/U.S. dollar spot closing 
rates (St), appreciating (depreciating) the USD. Modified 
Phillips-Perron test, the Elliott-Rothenberg-Stock test 
and the augmented Dickey-Fuller test reject the null 
hypothesis of a unit root in both the FX returns and the 
total order flow series. 

4. RESULTS 
To assess causality at different time scales, Granger 
causality tests are applied on wavelet details of FX 
returns (rt) and total order flow (xt) series. The Wald 
test is used to test two null hypotheses: 1) order flow 
does not Granger cause returns and 2) returns do not 
Granger cause order flow. First, the MODWT decomposes 
the original time series into different time scales using 
the S(8) filter. As the data are daily, the first scale is 
defined roughly for the 2 day horizon, the second scale 
for 4 days, etc. Table 1 shows the results of causality 
tests for the first seven scales. It can be seen that bi-
directional causality is present at each time scale up to 
128 days (4 months). Thus, even in long run, reverse 
causality effects are dominant which contrasts the 
microstructure literature. This suggests that regression 
estimates based on this data set would be biased. 

Table 1. Granger causality between returns and total order 
flow using S(8) filter 

 
The null hypotheses are: 1) order flow does not Granger cause returns 
(rt ← xt) and 2) returns do not Granger cause order flow (rt ← xt). 
Arrows denote the direction of Granger causality between FX returns 
(rt) and aggregate market order flow (xt) that is statistically significant 
at the 1% significance level. 

To investigate the robustness of the results to the 
choice of wavelet filters, granger causality test results 
are also reported for the MODWT using S(4), D(4) and 
Haar filters (Table 2). 
Table 2. Granger causality between returns and total order 

flow using S(4), D(4) and Haar filters 

 
The null hypotheses are: 1) order flow does not Granger cause 
returns (rt xt) and 2) returns do not Granger cause order flow (rt ! xt). 
Arrows denote the direction of Granger causality between FX returns 
(rt) and aggregate market order flow (xt) that is statistically significant 
at the 1% significance level. 

The results are in general similar to Table 1, except for 
the Haar filter when order flow granger causes returns 
at the third time scale (i.e., weekly data horizon), but 
reverse causality is not found.5 

Next, multiresolution analysis (MRA) and decomposition of 
returns and aggregate order flow at multiple time scales 
are conducted. Figure 1 provides multiresolution analysis 
and Figure 2 presents multiresolution decomposition 
(MRD). The difference between multiresolution analysis 
and decomposition is that the former examines the 
smooth and the latter examines the detail component of 
the raw data series. 

From Figure 1 it appears that there exist sharp increases 
and decreases in the variability of both FX returns and 
order flow series. Specifically, for FX returns, candidates 
for regime shifts are periods around 1994-1995 when the 
volatility decreased and 1999 when an increase in volatility 
was permanent and lasted until the last day of the sample. 
These fluctuations are followed by the order flow behavior 
around 1999 when it exhibits a significant spike. Such 
effects are particularly pronounced for scales 1 to 4. 
Multiresolution decomposition (Figure 2) confirms these 
findings and pins down the period around 1999 as the 
major structural break in the data. 

 
5The results for wavelet smooth are consistent with the results for 
wavelet detail and they can be available upon request from the author. 
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(a) MRA of rt 

 
(b) MRA of xt 

Figure 1. Multiresolution analysis of returns and total order 
flow. The multiresolution analysis is conducted using S(8) 
filter. The left panel shows the smooth component of FX 
returns at scales from 1 to 8. The right panel shows the 
smooth component of total order flow at scales from 1 to 8 

 
(a) MRD of rt 

 
(b) MRD of xt 

Figure 2. Multiresolution decomposition of returns and total 
order flow. The multiresolution decomposition is conducted 
using S(8) filter. The left panel shows the detail component of 
FX returns at scales from 1 to 8. The right panel shows the 
detail component of total order flow at scales from 1 to 8 
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5. CONCLUSIONS 

The goal of this study is to critically investigate the 
causality relationship between spot exchange rates and 
aggregate currency order flow in the Canada/U.S. dollar 
market. In particular, by utilizing the wavelet methodology, 
the paper tests the theoretical prediction of market 
microstructure literature that order flow drives exchange 
rates (and not vice versa). 

The results offer little reason for optimism: Granger 
causality is found to persistently run both ways, from 
order flow to FX returns and in the reverse direction. 
The presence of a perverse causal relationship at all 
time scales could arise from a number of factors. First, 
it may simply be that the nature of order flow-exchange 
rate interactions is such that it requires dynamic models 
such as a VAR or VECM system where both variables 
would be determined endogenously. Second, the Bank 
of Canada data may be too noisy and unrepresentative 
of the total Canada/U.S. dollar order flow, i.e., subject to 
the errors-in-variables problem. Third, reverse causality 
may reflect the predominance of technical trading 
strategies at all horizons. 

Finally, given the evidence of structural breaks in 1998-
1999, it may be that the relationship between order flow 
and returns is inherently unstable. Noteworthy, the 1998-
1999 period cover the August 1998 Russian default and 
the September 1998 collapse of Long-Term Capital 
Management, while the Canadian dollar depreciated by 
10 cents in August 1998. 
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